当前位置: 首页 > 编程笔记 >

Q表如何根据机器学习中的强化学习来帮助确定“代理”的下一步动作?

周麒
2023-03-14
本文向大家介绍Q表如何根据机器学习中的强化学习来帮助确定“代理”的下一步动作?,包括了Q表如何根据机器学习中的强化学习来帮助确定“代理”的下一步动作?的使用技巧和注意事项,需要的朋友参考一下

我们先前借助Q值和Q表了解了Q学习的工作原理。Q学习是一种强化学习算法,其中包含一个“代理”,它采取达到最佳解决方案所需的行动。这可以通过作为神经网络存在的Q表来实现。它有助于采取正确的步骤,使报酬最大化,从而达到最佳解决方案。

现在,让我们看看代理如何使用该策略来决定实现最佳结果所需采取的下一步。

  • 该策略根据代理所处的当前状态来考虑所有可能采取的措施的Q值。

  • Q值的值越高,作用越好。

  • 有时,如果策略已经具备执行下一步所需的知识,则它会选择忽略Q表。

  • 相反,它选择采取另一种随机动作并找到更高的潜在回报。

  • 情节开始时,代理将采取随机行动,因为尚未填充Q表,并且不会提供太多信息。

  • 但是随着时间的流逝,Q表逐渐被填充。

由于已填充此Q表,因此代理程序具有更多有关如何与环境交互以获取最大回报的知识。

座席执行每个新操作后,将借助Bellman方程更新Q值。

重要的是要了解,更新后的Q值基于新收到的奖励和相对于新状态的Q值的最大可能值。

Q表非常大,因为它包含棋盘的所有可能的配置和移动。这将占用系统中的大量内存。因此,使用神经网络来存储Q表,这有助于向代理建议针对每种状态的最佳操作。

由于使用了神经网络,强化学习算法在诸如Dota 2和Go的任务上获得了更好的性能

 类似资料:
  • 本文向大家介绍关于机器学习中的强化学习,什么是Q学习?,包括了关于机器学习中的强化学习,什么是Q学习?的使用技巧和注意事项,需要的朋友参考一下 Q学习是一种强化学习算法,其中包含一个“代理”,它采取达到最佳解决方案所需的行动。 强化学习是“半监督”机器学习算法的一部分。将输入数据集提供给强化学习算法时,它会从此类数据集学习,否则会从其经验和环境中学习。 当“强化代理人”执行某项操作时,将根据其是否

  • 主要内容 课程列表 基础知识 专项课程学习 参考书籍 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 MDP和RL介绍8 9 10 11 Berkeley 暂无 链接 MDP简介 暂无 Shaping and policy search in Reinforcement learning 链接 强化学习 UCL An Introduction to Reinforcement Lea

  • 强化学习(Reinforcement Learning)的输入数据作为对模型的反馈,强调如何基于环境而行动,以取得最大化的预期利益。与监督式学习之间的区别在于,它并不需要出现正确的输入/输出对,也不需要精确校正次优化的行为。强化学习更加专注于在线规划,需要在探索(在未知的领域)和遵从(现有知识)之间找到平衡。 Deep Q Learning.

  • 探索和利用。马尔科夫决策过程。Q 学习,策略学习和深度强化学习。 我刚刚吃了一些巧克力来完成最后这部分。 在监督学习中,训练数据带有来自神一般的“监督者”的答案。如果生活可以这样,该多好! 在强化学习(RL)中,没有这种答案,但是你的强化学习智能体仍然可以决定如何执行它的任务。在缺少现有训练数据的情况下,智能体从经验中学习。在它尝试任务的时候,它通过尝试和错误收集训练样本(这个动作非常好,或者非常

  • 从sklearn加载流行数字数据集。数据集模块,并将其分配给可变数字。 分割数字。将数据分为两组,分别命名为X_train和X_test。还有,分割数字。目标分为两组Y_训练和Y_测试。 提示:使用sklearn中的训练测试分割方法。模型选择;将随机_状态设置为30;并进行分层抽样。使用默认参数,从X_序列集和Y_序列标签构建SVM分类器。将模型命名为svm_clf。 在测试数据集上评估模型的准确

  • 新手问题 我正在使用 TensorFlow 编写一个 OpenAI Gym 乒乓球运动员,到目前为止,我已经能够基于随机初始化创建网络,以便它会随机返回以向上或向下移动玩家桨。 时代结束后(在电脑获胜的21场比赛中),我收集了一组观察结果、动作和得分。一场比赛的最后观察得到一个分数,之前的每一次观察都可以根据贝尔曼方程进行评分。 现在我的问题是我还不明白的:我如何计算成本函数,以便它作为反向传播的