新手问题 我正在使用 TensorFlow 编写一个 OpenAI Gym 乒乓球运动员,到目前为止,我已经能够基于随机初始化创建网络,以便它会随机返回以向上或向下移动玩家桨。
时代结束后(在电脑获胜的21场比赛中),我收集了一组观察结果、动作和得分。一场比赛的最后观察得到一个分数,之前的每一次观察都可以根据贝尔曼方程进行评分。
现在我的问题是我还不明白的:我如何计算成本函数,以便它作为反向传播的起始梯度传播?我完全理解有监督的学习,但在这里,我们没有任何可以再得分的标签。
如何开始优化网络?
也许指向现有代码或一些文献的指针会有所帮助。
这里是我计算奖励的地方:
def compute_observation_rewards(self, gamma, up_score_probabilities):
"""
Applies Bellman equation and determines reward for each stored observation
:param gamma: Learning decay
:param up_score_probabilities: Probabilities for up score
:returns: List of scores for each move
"""
score_sum = 0
discounted_rewards = []
# go backwards through all observations
for i, p in enumerate(reversed(self._states_score_action)):
o = p[0]
s = p[1]
if s != 0:
score_sum = 0
score_sum = score_sum * gamma + s
discounted_rewards.append(score_sum)
# # normalize scores
discounted_rewards = np.array(discounted_rewards)
discounted_rewards -= np.mean(discounted_rewards)
discounted_rewards /= np.std(discounted_rewards)
return discounted_rewards
以下是我的网络:
with tf.variable_scope('NN_Model', reuse=tf.AUTO_REUSE):
layer1 = tf.layers.conv2d(inputs,
3,
3,
strides=(1, 1),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation= tf.nn.relu,
use_bias=True,
bias_initializer=tf.zeros_initializer(),
trainable=True,
name='layer1'
)
# (N - F + 1) x (N - F + 1)
# => layer1 should be
# (80 - 3 + 1) * (80 - 3 + 1) = 78 x 78
pool1 = tf.layers.max_pooling2d(layer1,
pool_size=5,
strides=2,
name='pool1')
# int((N - f) / s +1)
# (78 - 5) / 2 + 1 = 73/2 + 1 = 37
layer2 = tf.layers.conv2d(pool1,
5,
5,
strides=(2, 2),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation= tf.nn.relu,
use_bias=True,
kernel_initializer=tf.random_normal_initializer(),
bias_initializer=tf.zeros_initializer(),
trainable=True,
name='layer2',
reuse=None
)
# ((N + 2xpadding - F) / stride + 1) x ((N + 2xpadding - F) / stride + 1)
# => layer1 should be
# int((37 + 0 - 5) / 2) + 1
# 16 + 1 = 17
pool2 = tf.layers.max_pooling2d(layer2,
pool_size=3,
strides=2,
name='pool2')
# int((N - f) / s +1)
# (17 - 3) / 2 + 1 = 7 + 1 = 8
flat1 = tf.layers.flatten(pool2, 'flat1')
# Kx64
full1 = tf.contrib.layers.fully_connected(flat1,
num_outputs=1,
activation_fn=tf.nn.sigmoid,
weights_initializer=tf.contrib.layers.xavier_initializer(),
biases_initializer=tf.zeros_initializer(),
trainable=True,
scope=None
)
您正在寻找的算法称为强化。我建议阅读萨顿和巴托的RL书的第13章。
这里,θ是神经网络的权重集。如果你不熟悉其余的一些符号,我建议你阅读上述书的第3章。它涵盖了基本问题的表述。
主要内容 课程列表 基础知识 专项课程学习 参考书籍 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 MDP和RL介绍8 9 10 11 Berkeley 暂无 链接 MDP简介 暂无 Shaping and policy search in Reinforcement learning 链接 强化学习 UCL An Introduction to Reinforcement Lea
强化学习(Reinforcement Learning)的输入数据作为对模型的反馈,强调如何基于环境而行动,以取得最大化的预期利益。与监督式学习之间的区别在于,它并不需要出现正确的输入/输出对,也不需要精确校正次优化的行为。强化学习更加专注于在线规划,需要在探索(在未知的领域)和遵从(现有知识)之间找到平衡。 Deep Q Learning.
探索和利用。马尔科夫决策过程。Q 学习,策略学习和深度强化学习。 我刚刚吃了一些巧克力来完成最后这部分。 在监督学习中,训练数据带有来自神一般的“监督者”的答案。如果生活可以这样,该多好! 在强化学习(RL)中,没有这种答案,但是你的强化学习智能体仍然可以决定如何执行它的任务。在缺少现有训练数据的情况下,智能体从经验中学习。在它尝试任务的时候,它通过尝试和错误收集训练样本(这个动作非常好,或者非常
强化学习(RL)如今是机器学习的一大令人激动的领域,也是最老的领域之一。自从 1950 年被发明出来后,它被用于一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和机器控制领域,但是从未弄出什么大新闻。直到 2013 年一个革命性的发展:来自英国的研究者发起了 Deepmind 项目,这个项目可以学习去玩任何从头开始的 Atari 游戏,在多数游戏中,比人类玩的还好,它仅
强化学习(RL)如今是机器学习的一大令人激动的领域,当然之前也是。自从 1950 年被发明出来后,它在这些年产生了一些有趣的应用,尤其是在游戏(例如 TD-Gammon,一个西洋双陆棋程序)和及其控制领域,但是从未弄出什么大新闻。直到 2013 年一个革命性的发展:来自英国的研究者发起了一项 Deepmind 项目,这个项目可以学习去玩任何从头开始的 Atari 游戏,甚至多数比人类玩的还要好,它
在本章中,您将详细了解使用Python在AI中强化学习的概念。 强化学习的基础知识 这种类型的学习用于基于评论者信息来加强或加强网络。 也就是说,在强化学习下训练的网络从环境中接收一些反馈。 然而,反馈是有评价性的,而不是像监督学习那样具有指导性。 基于该反馈,网络执行权重的调整以在将来获得更好的批评信息。 这种学习过程类似于监督学习,但我们的信息可能非常少。 下图给出了强化学习的方框图 - 构建