一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):
resnet_layer = nn.Sequential(*list(model.children())[:-2])
那么,接下来就可以构建我们的网络了:
class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取掉model的后两层 self.resnet_layer = nn.Sequential(*list(model.children())[:-2]) self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3) self.pool_layer = nn.MaxPool2d(32) self.Linear_layer = nn.Linear(2048, 8) def forward(self, x): x = self.resnet_layer(x) x = self.transion_layer(x) x = self.pool_layer(x) x = x.view(x.size(0), -1) x = self.Linear_layer(x) return x
最后,构建一个对象,并加载resnet预训练的参数就可以啦~
resnet = models.resnet50(pretrained=True) model = Net(resnet)
以上这篇pytorch 更改预训练模型网络结构的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
本文向大家介绍pytorch构建网络模型的4种方法,包括了pytorch构建网络模型的4种方法的使用技巧和注意事项,需要的朋友参考一下 利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。 假设构建一个网络模型如下: 卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层 首先导入几种方法用到的包: 第一种方法 这种方法比较常用,早期的教程通常就是使用这种
本文向大家介绍python PyTorch预训练示例,包括了python PyTorch预训练示例的使用技巧和注意事项,需要的朋友参考一下 前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢。各种设计直接简洁,方便研究,比tensorflow的臃肿好多了。今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回
本文向大家介绍Pytorch加载部分预训练模型的参数实例,包括了Pytorch加载部分预训练模型的参数实例的使用技巧和注意事项,需要的朋友参考一下 前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是
本文向大家介绍Keras使用ImageNet上预训练的模型方式,包括了Keras使用ImageNet上预训练的模型方式的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说了,大家还是直接看代码吧! 在以上代码中,我们首先import各种模型对应的module,然后load模型,并用ImageNet的参数初始化模型的参数。 如果不想使用ImageNet上预训练到的权重初始话模型,可以将各语句的中
本文向大家介绍pytorch 使用加载训练好的模型做inference,包括了pytorch 使用加载训练好的模型做inference的使用技巧和注意事项,需要的朋友参考一下 前提: 模型参数和结构是分别保存的 1、 构建模型(# load model graph) model = MODEL() 2、加载模型参数(# load model state_dict) (解决RuntimeError:
本文向大家介绍pytorch打印网络结构的实例,包括了pytorch打印网络结构的实例的使用技巧和注意事项,需要的朋友参考一下 最简单的方法当然可以直接print(net),但是这样网络比较复杂的时候效果不太好,看着比较乱;以前使用caffe的时候有一个网站可以在线生成网络框图,tensorflow可以用tensor board,keras中可以用model.summary()、或者plot_mo