当前位置: 首页 > 编程笔记 >

pytorch 求网络模型参数实例

端木弘方
2023-03-14
本文向大家介绍pytorch 求网络模型参数实例,包括了pytorch 求网络模型参数实例的使用技巧和注意事项,需要的朋友参考一下

用pytorch训练一个神经网络时,我们通常会很关心模型的参数总量。下面分别介绍来两种方法求模型参数

一 .求得每一层的模型参数,然后自然的可以计算出总的参数。

1.先初始化一个网络模型model

比如我这里是 model=cliqueNet(里面是些初始化的参数)

2.调用model的Parameters类获取参数列表

一个典型的操作就是将参数列表传入优化器里。如下

 optimizer = optim.Adam(model.parameters(), lr=opt.lr)

言归正传,继续回到参数里面,参数在网络里面就是variable,下面分别求每层的尺寸大小和个数。

函数get_number_of_param( ) 里面的参数就是刚才第一步初始化的model

def get_number_of_param(model):
  """get the number of param for every element"""
  count = 0
  for param in model.parameters():
    param_size = param.size()
    count_of_one_param = 1
    for dis in param_size:
      count_of_one_param *= dis
    print(param.size(), count_of_one_param)
    count += count_of_one_param
    print(count)
  print('total number of the model is %d'%count)

再来看看结果:

torch.Size([64, 1, 3, 3]) 576
576
torch.Size([64]) 64
640
torch.Size([6, 36, 64, 3, 3]) 124416
125056
torch.Size([30, 36, 36, 3, 3]) 349920
474976
torch.Size([12, 36]) 432
475408
torch.Size([6, 36, 216, 3, 3]) 419904
895312
torch.Size([30, 36, 36, 3, 3]) 349920
1245232
torch.Size([12, 36]) 432
1245664
torch.Size([6, 36, 216, 3, 3]) 419904
1665568
torch.Size([30, 36, 36, 3, 3]) 349920
2015488
torch.Size([12, 36]) 432
2015920
torch.Size([6, 36, 216, 3, 3]) 419904
2435824
torch.Size([30, 36, 36, 3, 3]) 349920
2785744
torch.Size([12, 36]) 432
2786176
torch.Size([216, 216, 1, 1]) 46656
2832832
torch.Size([216]) 216
2833048
torch.Size([108, 216]) 23328
2856376
torch.Size([108]) 108
2856484
torch.Size([216, 108]) 23328
2879812
torch.Size([216]) 216
2880028
torch.Size([216, 216, 1, 1]) 46656
2926684
torch.Size([216]) 216
2926900
torch.Size([108, 216]) 23328
2950228
torch.Size([108]) 108
2950336
torch.Size([216, 108]) 23328
2973664
torch.Size([216]) 216
2973880
torch.Size([216, 216, 1, 1]) 46656
3020536
torch.Size([216]) 216
3020752
torch.Size([108, 216]) 23328
3044080
torch.Size([108]) 108
3044188
torch.Size([216, 108]) 23328
3067516
torch.Size([216]) 216
3067732
torch.Size([140, 280, 1, 1]) 39200
3106932
torch.Size([140]) 140
3107072
torch.Size([216, 432, 1, 1]) 93312
3200384
torch.Size([216]) 216
3200600
torch.Size([216, 432, 1, 1]) 93312
3293912
torch.Size([216]) 216
3294128
torch.Size([9, 572, 3, 3]) 46332
3340460
torch.Size([9]) 9
3340469
total number of the model is 3340469

可以通过计算验证一下,发现参数与网络是一致的。

二:一行代码就可以搞定参数总个数问题

2.1 先来看看torch.tensor.numel( )这个函数的功能就是求tensor中的元素个数,在网络里面每层参数就是多维数组组成的tensor。

实际上就是求多维数组的元素个数。看代码。

print('cliqueNet parameters:', sum(param.numel() for param in model.parameters()))

当然上面代码中的model还是上面初始化的网络模型。

看看两种的计算结果

torch.Size([64, 1, 3, 3]) 576
576
torch.Size([64]) 64
640
torch.Size([6, 36, 64, 3, 3]) 124416
125056
torch.Size([30, 36, 36, 3, 3]) 349920
474976
torch.Size([12, 36]) 432
475408
torch.Size([6, 36, 216, 3, 3]) 419904
895312
torch.Size([30, 36, 36, 3, 3]) 349920
1245232
torch.Size([12, 36]) 432
1245664
torch.Size([6, 36, 216, 3, 3]) 419904
1665568
torch.Size([30, 36, 36, 3, 3]) 349920
2015488
torch.Size([12, 36]) 432
2015920
torch.Size([6, 36, 216, 3, 3]) 419904
2435824
torch.Size([30, 36, 36, 3, 3]) 349920
2785744
torch.Size([12, 36]) 432
2786176
torch.Size([216, 216, 1, 1]) 46656
2832832
torch.Size([216]) 216
2833048
torch.Size([108, 216]) 23328
2856376
torch.Size([108]) 108
2856484
torch.Size([216, 108]) 23328
2879812
torch.Size([216]) 216
2880028
torch.Size([216, 216, 1, 1]) 46656
2926684
torch.Size([216]) 216
2926900
torch.Size([108, 216]) 23328
2950228
torch.Size([108]) 108
2950336
torch.Size([216, 108]) 23328
2973664
torch.Size([216]) 216
2973880
torch.Size([216, 216, 1, 1]) 46656
3020536
torch.Size([216]) 216
3020752
torch.Size([108, 216]) 23328
3044080
torch.Size([108]) 108
3044188
torch.Size([216, 108]) 23328
3067516
torch.Size([216]) 216
3067732
torch.Size([140, 280, 1, 1]) 39200
3106932
torch.Size([140]) 140
3107072
torch.Size([216, 432, 1, 1]) 93312
3200384
torch.Size([216]) 216
3200600
torch.Size([216, 432, 1, 1]) 93312
3293912
torch.Size([216]) 216
3294128
torch.Size([9, 572, 3, 3]) 46332
3340460
torch.Size([9]) 9
3340469
total number of the model is 3340469
cliqueNet parameters: 3340469

可以看出两种计算出来的是一模一样的。

以上这篇pytorch 求网络模型参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍网络数据模型,包括了网络数据模型的使用技巧和注意事项,需要的朋友参考一下 创建网络数据库模型是为了解决分层数据库模型的缺点。在这种类型的模型中,一个孩子可以链接到多个父母,而分层数据模型不支持该功能。父节点称为所有者,子节点称为成员。 网络数据模型可以表示为- 网络模型的优势 如图所示,网络模型可以支持许多关系。D2和C3每个都有多个主机。D2的主控是C1和C2,而C3的主控是B1和

  • 本文向大家介绍pytorch构建网络模型的4种方法,包括了pytorch构建网络模型的4种方法的使用技巧和注意事项,需要的朋友参考一下 利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。 假设构建一个网络模型如下: 卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层 首先导入几种方法用到的包: 第一种方法 这种方法比较常用,早期的教程通常就是使用这种

  • 网络模型 在某些情况下,你需要理解Subversion客户端如何与服务器通讯。Subversion网络层是抽象的,意味着Subversion客户端不管其操作的对象都会使用相同的行为方式,不管是使用HTTP协议(http://)与Apache HTTP服务器通讯或是使用自定义Subversion协议(svn://)与svnserve通讯,基本的网络模型是相同的。在本小节,我们要解释网络模型基础,包括

  • 本文向大家介绍Pytorch加载部分预训练模型的参数实例,包括了Pytorch加载部分预训练模型的参数实例的使用技巧和注意事项,需要的朋友参考一下 前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是

  • 本文向大家介绍pytorch打印网络结构的实例,包括了pytorch打印网络结构的实例的使用技巧和注意事项,需要的朋友参考一下 最简单的方法当然可以直接print(net),但是这样网络比较复杂的时候效果不太好,看着比较乱;以前使用caffe的时候有一个网站可以在线生成网络框图,tensorflow可以用tensor board,keras中可以用model.summary()、或者plot_mo

  • Kubernetes网络模型 IP-per-Pod,每个Pod都拥有一个独立IP地址,Pod内所有容器共享一个网络命名空间 集群内所有Pod都在一个直接连通的扁平网络中,可通过IP直接访问 所有容器之间无需NAT就可以直接互相访问 所有Node和所有容器之间无需NAT就可以直接互相访问 容器自己看到的IP跟其他容器看到的一样 Service cluster IP尽可在集群内部访问,外部请求需要通过