对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。
1. 获取数据,定义问题
没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归。
数据的介绍在这:http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
数据的下载地址在这:http://archive.ics.uci.edu/ml/machine-learning-databases/00294/
里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。
我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:
PE=θ 0 +θ 1 ∗AT+θ 2 ∗V+θ 3 ∗AP+θ 4 ∗RH 而需要学习的,就是\(\theta_0, \theta_1, \theta_2, \theta_3, \theta_4\)这5个参数。
2. 整理数据
下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着“另存为“”csv格式,保存下来,后面我们就用这个csv来运行线性回归。
打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。
好了,有了这个csv格式的数据,我们就可以大干一场了。
3.用pandas来读取数据
我们先打开ipython notebook,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。
先把要导入的库声明了:
import matplotlib.pyplot as plt %matplotlib inline import numpy as np import pandas as pd from sklearn import datasets, linear_model
接着我们就可以用pandas读取数据了:
# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里 data = pd.read_csv('.\CCPP\ccpp.csv')
测试下读取数据是否成功:
#读取前五行数据,如果是最后五行,用data.tail() data.head()
运行结果应该如下,看到下面的数据,说明pandas读取数据成功:
AT | V | AP | RH | PE | |
---|---|---|---|---|---|
0 | 8.34 | 40.77 | 1010.84 | 90.01 | 480.48 |
1 | 23.64 | 58.49 | 1011.40 | 74.20 | 445.75 |
2 | 29.74 | 56.90 | 1007.15 | 41.91 | 438.76 |
3 | 19.07 | 49.69 | 1007.22 | 76.79 | 453.09 |
4 | 11.80 | 40.66 | 1017.13 | 97.20 | 464.43 |
4.准备运行算法的数据
我们看看数据的维度:
data.shape
结果是(9568, 5)。说明我们有9568个样本,每个样本有5列。
现在我们开始准备样本特征X,我们用AT, V,AP和RH这4个列作为样本特征。
X = data[['AT', 'V', 'AP', 'RH']] X.head()
可以看到X的前五条输出如下:
AT | V | AP | RH | |
---|---|---|---|---|
0 | 8.34 | 40.77 | 1010.84 | 90.01 |
1 | 23.64 | 58.49 | 1011.40 | 74.20 |
2 | 29.74 | 56.90 | 1007.15 | 41.91 |
3 | 19.07 | 49.69 | 1007.22 | 76.79 |
4 | 11.80 | 40.66 | 1017.13 | 97.20 |
接着我们准备样本输出y, 我们用PE作为样本输出。
y = data[['PE']] y.head()
可以看到y的前五条输出如下:
PE | |
---|---|
0 | 480.48 |
1 | 445.75 |
2 | 438.76 |
3 | 453.09 |
4 | 464.43 |
5. 划分训练集和测试集
我们把X和y的样本组合划分成两部分,一部分是训练集,一部分是测试集,代码如下:
from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
查看下训练集和测试集的维度:
print X_train.shape print y_train.shape print X_test.shape print y_test.shape
结果如下:
(7176, 4)
(7176, 1)
(2392, 4)
(2392, 1)
可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。
6. 运行scikit-learn的线性模型
终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。代码如下:
from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train)
拟合完毕后,我们看看我们的需要的模型系数结果:
print linreg.intercept_ print linreg.coef_
输出如下:
[ 447.06297099]
[[-1.97376045 -0.23229086 0.0693515 -0.15806957]]
这样我们就得到了在步骤1里面需要求得的5个值。也就是说PE和其他4个变量的关系如下:
7. 模型评价
我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error, MSE)或者均方根差(Root Mean Squared Error, RMSE)在测试集上的表现来评价模型的好坏。
我们看看我们的模型的MSE和RMSE,代码如下:
#模型拟合测试集 y_pred = linreg.predict(X_test) from sklearn import metrics # 用scikit-learn计算MSE print "MSE:",metrics.mean_squared_error(y_test, y_pred) # 用scikit-learn计算RMSE print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))
输出如下:
MSE: 20.0804012021
RMSE: 4.48111606657
得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。
比如这次我们用AT, V,AP这3个列作为样本特征。不要RH, 输出仍然是PE。代码如下:
X = data[['AT', 'V', 'AP']] y = data[['PE']] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train) #模型拟合测试集 y_pred = linreg.predict(X_test) from sklearn import metrics # 用scikit-learn计算MSE print "MSE:",metrics.mean_squared_error(y_test, y_pred) # 用scikit-learn计算RMSE print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))
输出如下:
MSE: 23.2089074701
RMSE: 4.81756239919
可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。
8. 交叉验证
我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:
X = data[['AT', 'V', 'AP', 'RH']] y = data[['PE']] from sklearn.model_selection import cross_val_predict predicted = cross_val_predict(linreg, X, y, cv=10) # 用scikit-learn计算MSE print "MSE:",metrics.mean_squared_error(y, predicted) # 用scikit-learn计算RMSE print "RMSE:",np.sqrt(metrics.mean_squared_error(y, predicted))
输出如下:
MSE: 20.7955974619
RMSE: 4.56021901469
可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。
9. 画图观察结果
这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:
fig, ax = plt.subplots() ax.scatter(y, predicted) ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') plt.show()
输出的图像如下:
完整的jupyter-notebook代码参看我的Github。
以上就是用scikit-learn和pandas学习线性回归的过程,希望可以对初学者有所帮助。也希望大家多多支持小牛知识库。
在机器学习课程https://share.coursera.org/wiki/index.php/ML:Linear_Regression_with_Multiple_Variables#Gradient_Descent_for_Multiple_Variables中,它说梯度下降应该收敛。 我正在使用scikit学习的线性回归。它不提供梯度下降信息。我已经看到了许多关于stackoverflow
本文向大家介绍scikit-learn线性回归,多元回归,多项式回归的实现,包括了scikit-learn线性回归,多元回归,多项式回归的实现的使用技巧和注意事项,需要的朋友参考一下 匹萨的直径与价格的数据 训练模型 预测一张12英寸匹萨价格:$13.68 一元线性回归假设解释变量和响应变量之间存在线性关系;这个线性模型所构成的空间是一个超平面(hyperplane)。 超平面是n维欧氏空间中余维
多元线性回归模型 方程:Y=Xβ 求解多元线性回归问题就是求解β: 因为X不一定是方阵,所以不能直接β=X-1Y 两边同时乘以Xt,得到XtY=XtXβ 因为XtX是方阵,它的逆是(XtX)-1,所以两边同时乘(XtX)-1得到 (XtX)-1XtY=β 根据这个公式,我们自己设计一个例子,验证一下 设计二元一次方程:y=1+2x1+3x2 取样本为(1,1,1),(1,1,2),(1,2,1)
一元线性回归 y=f(x)叫做一元函数,回归的意思就是根据已知数据复原某些值,线性回归(regression)就是用线性的模型做回归复原。 那么一元线性回归就是:已知一批(x,y)值来复原另外未知的值。 比如:告诉你(1,1),(2,2),(3,3),那么问你(4,?)是多少,很容易复原出来(4,4),这就是一元线性回归问题的求解 当然实际给你的数据可能不是严格线性,但依然让我们用一元线性回归来计
本文向大家介绍Python scikit-learn 做线性回归的示例代码,包括了Python scikit-learn 做线性回归的示例代码的使用技巧和注意事项,需要的朋友参考一下 一、概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出。当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较
二类分类问题 逻辑回归最广泛的应用就是二类分类,我们以脏话判别为例来利用逻辑回归,对一句话做脏话分析判断 输入样本如下: 是脏话:fuck you 是脏话:fuck you all 不是脏话:hello everyone 我们来预测以下两句话是否是脏话: fuck me hello boy # coding:utf-8 import sys reload(sys) sys.setdefault