scikit-learn

Python 机器学习工具包
授权协议 BSD
开发语言 Python
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 宗政金鹏
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

scikit-learn 是一个 Python 的机器学习项目。是一个简单高效的数据挖掘和数据分析工具。基于 NumPySciPy 和 matplotlib 构建。

Installation

依赖

scikit-learn 要求:

  • Python (>= 2.7 or >= 3.3)

  • NumPy (>= 1.8.2)

  • SciPy (>= 0.13.3)

运行示例需要 Matplotlib >= 1.1.1 。

User installation

已有 numpy 和 scipy 的用户安装 scikit-learn 最简单的方法是使用 pip :

pip install -U scikit-learn

或 conda:

conda install scikit-learn
  • 写给自己的备忘 1 简介 对Python语言有所了解的科研人员可能都知道SciPy——一个开源的基于Python的科学计算工具包。基于SciPy,目前开发者们针对不同的应用领域已经发展出了为数众多的分支版本,它们被统一称为Scikits,即SciPy工具包的意思。而在这些分支版本中,最有名,也是专门面向机器学习的一个就是Scikit-learn。 Scikit-learn项目最早由数据科学家Dav

 相关资料
  • 从sklearn加载流行数字数据集。数据集模块,并将其分配给可变数字。 分割数字。将数据分为两组,分别命名为X_train和X_test。还有,分割数字。目标分为两组Y_训练和Y_测试。 提示:使用sklearn中的训练测试分割方法。模型选择;将随机_状态设置为30;并进行分层抽样。使用默认参数,从X_序列集和Y_序列标签构建SVM分类器。将模型命名为svm_clf。 在测试数据集上评估模型的准确

  • Scikit-learn 套件的安装 目前Scikit-learn同时支持Python 2及 3,安装的方式也非常多种。对于初学者,最建议的方式是直接下载 Anaconda Python (https://www.continuum.io/downloads)。同时支持 Windows / OSX/ Linux 等作业系统。相关数据分析套件如Scipy, Numpy, 及图形绘制库 matplot

  • 先决条件 Numpy, Scipy IPython matplotlib scikit-learn (http://scikit-learn.org) 警告:从版本0.9(在2011年9月发布)起,scikit-learn导入路径从scikits.learn 改为 sklearn 3.5.1 加载样例数据集 首先,我们将加载一些数据来玩玩。我们将使用的数据是知名的非常简单的花数据鸢尾花数据集。 我

  • 校验者: @小瑶 翻译者: @李昊伟 校验者: @hlxstc @BWM-蜜蜂 @小瑶 翻译者: @... 内容提要 在本节中,我们介绍一些在使用 scikit-learn 过程中用到的 机器学习 词汇,并且给出一些例子阐释它们。 机器学习:问题设置 一般来说,一个学习问题通常会考虑一系列 n 个 样本 数据,然后尝试预测未知数据的属性。 如果每个样本是 多个属性的数据 (比如说是一个多维记录),

  • 随着 AlphaGo 在人机大战中一举成名,关于机器学习的研究开始广受关注,数据科学家也一跃成为 21世纪最性感的职业。关于机器学习和神经网络的广泛应用虽然兴起不久,但是对这两个密切关联的领域的研究其实已经持续了好几十年,早已形成了系统化的知识体系。对于想要踏入机器学习领域的初学者而言,理论知识的获取并非难事。

  • 本文向大家介绍基于Python和Scikit-Learn的机器学习探索,包括了基于Python和Scikit-Learn的机器学习探索的使用技巧和注意事项,需要的朋友参考一下 你好,%用户名%! 我叫Alex,我在机器学习和网络图分析(主要是理论)有所涉猎。我同时在为一家俄罗斯移动运营商开发大数据产品。这是我第一次在网上写文章,不喜勿喷。 现在,很多人想开发高效的算法以及参加机器学习的竞赛。所以他

  • Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。

  • 主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资