本文实例讲述了Python图像处理之颜色的定义与使用。分享给大家供大家参考,具体如下:
python中的颜色相关的定义在matplotlib模块中,为方便使用,这里给大家展示一下在这个模块中都定义了哪些选颜色。
1、颜色名称的导出
导出代码如下:
import matplotlib for name, hex in matplotlib.colors.cnames.iteritems(): print(name, hex)
导出结果如下:
names = {
'aliceblue': '#F0F8FF',
'antiquewhite': '#FAEBD7',
'aqua': '#00FFFF',
'aquamarine': '#7FFFD4',
'azure': '#F0FFFF',
'beige': '#F5F5DC',
'bisque': '#FFE4C4',
'black': '#000000',
'blanchedalmond': '#FFEBCD',
'blue': '#0000FF',
'blueviolet': '#8A2BE2',
'brown': '#A52A2A',
'burlywood': '#DEB887',
'cadetblue': '#5F9EA0',
'chartreuse': '#7FFF00',
'chocolate': '#D2691E',
'coral': '#FF7F50',
'cornflowerblue': '#6495ED',
'cornsilk': '#FFF8DC',
'crimson': '#DC143C',
'cyan': '#00FFFF',
'darkblue': '#00008B',
'darkcyan': '#008B8B',
'darkgoldenrod': '#B8860B',
'darkgray': '#A9A9A9',
'darkgreen': '#006400',
'darkkhaki': '#BDB76B',
'darkmagenta': '#8B008B',
'darkolivegreen': '#556B2F',
'darkorange': '#FF8C00',
'darkorchid': '#9932CC',
'darkred': '#8B0000',
'darksalmon': '#E9967A',
'darkseagreen': '#8FBC8F',
'darkslateblue': '#483D8B',
'darkslategray': '#2F4F4F',
'darkturquoise': '#00CED1',
'darkviolet': '#9400D3',
'deeppink': '#FF1493',
'deepskyblue': '#00BFFF',
'dimgray': '#696969',
'dodgerblue': '#1E90FF',
'firebrick': '#B22222',
'floralwhite': '#FFFAF0',
'forestgreen': '#228B22',
'fuchsia': '#FF00FF',
'gainsboro': '#DCDCDC',
'ghostwhite': '#F8F8FF',
'gold': '#FFD700',
'goldenrod': '#DAA520',
'gray': '#808080',
'green': '#008000',
'greenyellow': '#ADFF2F',
'honeydew': '#F0FFF0',
'hotpink': '#FF69B4',
'indianred': '#CD5C5C',
'indigo': '#4B0082',
'ivory': '#FFFFF0',
'khaki': '#F0E68C',
'lavender': '#E6E6FA',
'lavenderblush': '#FFF0F5',
'lawngreen': '#7CFC00',
'lemonchiffon': '#FFFACD',
'lightblue': '#ADD8E6',
'lightcoral': '#F08080',
'lightcyan': '#E0FFFF',
'lightgoldenrodyellow': '#FAFAD2',
'lightgreen': '#90EE90',
'lightgray': '#D3D3D3',
'lightpink': '#FFB6C1',
'lightsalmon': '#FFA07A',
'lightseagreen': '#20B2AA',
'lightskyblue': '#87CEFA',
'lightslategray': '#778899',
'lightsteelblue': '#B0C4DE',
'lightyellow': '#FFFFE0',
'lime': '#00FF00',
'limegreen': '#32CD32',
'linen': '#FAF0E6',
'magenta': '#FF00FF',
'maroon': '#800000',
'mediumaquamarine': '#66CDAA',
'mediumblue': '#0000CD',
'mediumorchid': '#BA55D3',
'mediumpurple': '#9370DB',
'mediumseagreen': '#3CB371',
'mediumslateblue': '#7B68EE',
'mediumspringgreen': '#00FA9A',
'mediumturquoise': '#48D1CC',
'mediumvioletred': '#C71585',
'midnightblue': '#191970',
'mintcream': '#F5FFFA',
'mistyrose': '#FFE4E1',
'moccasin': '#FFE4B5',
'navajowhite': '#FFDEAD',
'navy': '#000080',
'oldlace': '#FDF5E6',
'olive': '#808000',
'olivedrab': '#6B8E23',
'orange': '#FFA500',
'orangered': '#FF4500',
'orchid': '#DA70D6',
'palegoldenrod': '#EEE8AA',
'palegreen': '#98FB98',
'paleturquoise': '#AFEEEE',
'palevioletred': '#DB7093',
'papayawhip': '#FFEFD5',
'peachpuff': '#FFDAB9',
'peru': '#CD853F',
'pink': '#FFC0CB',
'plum': '#DDA0DD',
'powderblue': '#B0E0E6',
'purple': '#800080',
'red': '#FF0000',
'rosybrown': '#BC8F8F',
'royalblue': '#4169E1',
'saddlebrown': '#8B4513',
'salmon': '#FA8072',
'sandybrown': '#FAA460',
'seagreen': '#2E8B57',
'seashell': '#FFF5EE',
'sienna': '#A0522D',
'silver': '#C0C0C0',
'skyblue': '#87CEEB',
'slateblue': '#6A5ACD',
'slategray': '#708090',
'snow': '#FFFAFA',
'springgreen': '#00FF7F',
'steelblue': '#4682B4',
'tan': '#D2B48C',
'teal': '#008080',
'thistle': '#D8BFD8',
'tomato': '#FF6347',
'turquoise': '#40E0D0',
'violet': '#EE82EE',
'wheat': '#F5DEB3',
'white': '#FFFFFF',
'whitesmoke': '#F5F5F5',
'yellow': '#FFFF00',
'yellowgreen': '#9ACD32'}
2、颜色图示
通过如下代码。可将上述颜色给逐个显示出来,代码如下:
import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.colors as colors import math fig = plt.figure() ax = fig.add_subplot(111) ratio = 1.0 / 3.0 count = math.ceil(math.sqrt(len(colors.cnames))) x_count = count * ratio y_count = count / ratio x = 0 y = 0 w = 1 / x_count h = 1 / y_count for c in colors.cnames: pos = (x / x_count, y / y_count) ax.add_patch(patches.Rectangle(pos, w, h, color=c)) ax.annotate(c, xy=pos) if y >= y_count-1: x += 1 y = 0 else: y += 1 plt.show()
显示结果如下:
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
主要内容:颜色命名,getrgb()方法,getcolor()Pillow 提供了颜色处理模块 ImageColor,该模块支持不同格式的颜色,比如 RGB 格式的颜色三元组、十六进制的颜色名称(#ff0000)以及颜色英文单词("red")。同时,它还可以将 CSS(层叠样式表,用来修饰网页)风格的颜色转换为 RGB 格式。 注意,在 ImageColor 模块对颜色的大小并不敏感,比如 "Red" 也可以写为 " red"。 颜色命名 ImageColo
图像被操纵,希望用计数器识别每张图片上的每个白点 主要问题在我的if语句中,不确定是否合乎逻辑。
本文向大家介绍PHP图像处理之使用imagecolorallocate()函数设置颜色例子,包括了PHP图像处理之使用imagecolorallocate()函数设置颜色例子的使用技巧和注意事项,需要的朋友参考一下 在是使用PHP动态输出美丽图像的同时,也离不开颜色的设置,就像画画时需要使用调色板一样。设置图像的颜色,需要调用imagecolorallocate()函数完成。如果在图像中需要设置多
我主要是要求线索,可以帮助我实现这一点,或者只是一个更聪明的方式来看待这个问题! 生成此图的代码: 点存储在pointMat字典中。每个区域都有一组点。一个区域是一种特定的材料。它在图一中由le黑线(约540)表示。所以在当前的例子中有两个材料。 编辑2:我不是绘制曲线,而是在网格上映射值(现象的离散化)。这个问题有太多的变化,这似乎是一个更好的想法。谢谢你花时间帮我!
问题内容: 从目前的情况来看,这个问题不适合我们的问答形式。我们希望答案能得到事实,参考或专业知识的支持,但是这个问题可能会引起辩论,争论,民意调查或扩展讨论。如果您认为此问题可以解决并且可以重新提出,请访问帮助中心以获取指导。 8年前关闭。 我最近遇到了至少需要基本图像处理程度的问题,我可以在Python中执行此操作吗? 问题答案: 最著名的库是PIL。但是,如果仅执行基本操作,则使用Image
本文向大家介绍Opencv图像处理之轮廓外背景颜色改变,包括了Opencv图像处理之轮廓外背景颜色改变的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了Opencv轮廓外背景颜色改变的具体代码,供大家参考,具体内容如下 自行学习弄得简单代码,使用了图像中的轮廓发现以及提取,再绘制出来,改变轮廓外的像素 首先,头文件,写的比较多,没用的可以自己去除 主函数 回调函数 以上就是本文的全部内