当前位置: 首页 > 编程笔记 >

python实现beta分布概率密度函数的方法

司马羽
2023-03-14
本文向大家介绍python实现beta分布概率密度函数的方法,包括了python实现beta分布概率密度函数的方法的使用技巧和注意事项,需要的朋友参考一下

如下所示:

beta分布的最大特点是其多样性, 从下图可以看出, beta分布具有各种形态, 有U形, 类似正态分布的形状, 类似uniform分布的形状等, 正式这一特质使beta分布在共轭先验的计算中起到重要作用:

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib import style
style.use('ggplot')
params = [0.5, 1, 2, 3]
x = np.linspace(0, 1, 100)
f, ax = plt.subplots(len(params), len(params), sharex=True, sharey=True)
for i in range(4):
  for j in range(4):
    alpha = params[i]
    beta = params[j]
    pdf = stats.beta(alpha, beta).pdf(x)
    ax[i, j].plot(x, pdf)
    ax[i, j].plot(0, 0, label='alpha={:3.2f}\nbeta={:3.2f}'.format(alpha, beta), alpha=0)
    plt.setp(ax[i, j], xticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], yticks=[0,2,4,6,8,10])
    ax[i, j].legend(fontsize=10)
ax[3, 0].set_xlabel('theta', fontsize=16)
ax[0, 0].set_ylabel('pdf(theta)', fontsize=16)
plt.suptitle('Beta PDF', fontsize=16)
plt.tight_layout()
plt.show()

以上这篇python实现beta分布概率密度函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍python 计算概率密度、累计分布、逆函数的例子,包括了python 计算概率密度、累计分布、逆函数的例子的使用技巧和注意事项,需要的朋友参考一下 计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个: pdf:连续随机分布的概率密度函数 pmf:离散随机分布的概率密度函数 cdf:累计分布函数 百分位函数(累计分布函数的逆函数) 生存函数的逆函数(1 - c

  • 我无法使用SciPy及其模块来计算多元高斯分布的概率密度函数。我知道存在这样的模块,但我无法使用它们(我甚至不能导入scipy:我得到的消息是:)的模块。

  • 译者:hijkzzz distributions 包含可参数化的概率分布和采样函数. 这允许构造用于优化的随机计算图和随机梯度估计器. 这个包一般遵循 TensorFlow Distributions 包的设计. 通常, 不可能直接通过随机样本反向传播. 但是, 有两种主要方法可创建可以反向传播的代理函数. 即得分函数估计器/似然比估计器/REINFORCE和pathwise derivative

  • 主要内容:实例,实例,概率分布,实例,实例,实例,实例,实例,实例,实例,数据分析,实例,实例,实例随机数 Verilog 中使用系统任务 $random(seed) 产生随机数,seed 为随机数种子。 seed 值不同,产生的随机数也不同。如果 seed 相同,产生的随机数也是一样的。 可以为 seed 赋初值,也可以忽略 seed 选项,seed 默认初始值为 0。 不使用 seed 选项和指定 seed 并对其修改来调用 $random 的代码如下所示: 实例     //seed va

  • 我之前一直专注于单一的随机变量及其概率分布。我们自然的会想将以前的结论推广到多个随机变量。联合分布(joint distribution)描述了多个随机变量的概率分布,是对单一随机变量的自然拓展。联合分布的多个随机变量都定义在同一个样本空间中。 对于联合分布来说,最核心的依然是概率测度这一概念。 离散随机变量的联合分布 我们先从离散的情况出发,了解多个随机变量并存的含义。 之前说,一个随机变量是从

  • 在随机变量中,我提到了连续随机变量。相对于离散随机变量,连续随机变量可以在一个连续区间内取值。比如一个均匀分布,从0到1的区间内取值。一个区间内包含了无穷多个实数,连续随机变量的取值就有无穷多个可能。 为了表示连续随机变量的概率分布,我们可以使用累积分布函数或者密度函数。密度函数是对累积分布函数的微分。连续随机变量在某个区间内的概率可以使用累积分布函数相减获得,即密度函数在相应区间的积分。 在随机