当前位置: 首页 > 编程笔记 >

python的几种矩阵相乘的公式详解

於宾白
2023-03-14
本文向大家介绍python的几种矩阵相乘的公式详解,包括了python的几种矩阵相乘的公式详解的使用技巧和注意事项,需要的朋友参考一下

1. 同线性代数中矩阵乘法的定义: np.dot()

np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。见如下Python代码:

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
# 2-D array: 3 x 2
two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]])

two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two)
print('two_multi_res: %s' %(two_multi_res))

# 1-D array
one_dim_vec_one = np.array([1, 2, 3])
one_dim_vec_two = np.array([4, 5, 6])
one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two)
print('one_result_res: %s' %(one_result_res))

结果如下:

two_multi_res: [[22 28]
 [49 64]]
one_result_res: 32

2. 对应元素相乘 element-wise product: np.multiply(), 或 *

在Python中,实现对应元素相乘,有2种方式,一个是np.multiply(),另外一个是*。见如下Python代码:

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]])

# 对应元素相乘 element-wise product
element_wise = two_dim_matrix_one * another_two_dim_matrix_one
print('element wise product: %s' %(element_wise))

# 对应元素相乘 element-wise product
element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one)
print('element wise product: %s' % (element_wise_2))

结果如下:

element wise product: [[ 7 16 27]
 [16 35 6]]
element wise product: [[ 7 16 27]
 [16 35 6]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 在R中,我可以在矩阵和(共形)向量之间进行分段乘法,例如: 矩阵的每一行都与相应的向量元素相乘。我也可以对维度大于2的数组做同样的事情: 同样,每一行都与相应的向量元素相乘。我能为3d阵列和2d矩阵做类似的事情吗?我只想让数组中的每个子矩阵都按元素乘以一个矩阵。

  • 本文向大家介绍python实现矩阵乘法的方法,包括了python实现矩阵乘法的方法的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了python实现矩阵乘法的方法。分享给大家供大家参考。具体实现方法如下: 希望本文所述对大家的Python程序设计有所帮助。

  • 本文向大家介绍纯python进行矩阵的相乘运算的方法示例,包括了纯python进行矩阵的相乘运算的方法示例的使用技巧和注意事项,需要的朋友参考一下 本文介绍了纯python进行矩阵的相乘运算的方法示例,分享给大家,具体如下: 说明: A矩阵与B矩阵的乘法运算,最终得到新的矩阵X , 思路 首先判断是否可以相乘:前提条件是A的列与B的行要相同 我们可以画图理解:假如A是3行5列,B是5行2列,相乘结

  • 本文向大家介绍在Python中使用Numpy将两个矩阵相乘,包括了在Python中使用Numpy将两个矩阵相乘的使用技巧和注意事项,需要的朋友参考一下 在本教程中,我们将学习如何使用Python中的NumPy库将两个矩阵相乘。使用NumPy库很简单。 它有一个称为点的矩阵乘法方法。您可以使用以下命令安装NumPy库。 让我们看看程序中涉及的步骤。 导入NumPy库。 初始化矩阵。 将矩阵与nump

  • 主要内容:逐元素矩阵乘法,矩阵乘积运算,矩阵点积矩阵乘法是将两个矩阵作为输入值,并将 A 矩阵的行与 B 矩阵的列对应位置相乘再相加,从而生成一个新矩阵,如下图所示: 注意:必须确保第一个矩阵中的行数等于第二个矩阵中的列数,否则不能进行矩阵乘法运算。 图1:矩阵乘法 矩阵乘法运算被称为向量化操作,向量化的主要目的是减少使用的 for 循环次数或者根本不使用。这样做的目的是为了加速程序的计算。 下面介绍 NumPy 提供的三种矩阵乘法,从而进一步

  • 问题内容: 在numpy中,我有N个3x3矩阵的数组。这将是我如何存储它们的示例(我正在提取内容): 我也有一个由3个向量组成的数组,这将是一个示例: 我似乎无法弄清楚如何通过numpy将它们相乘,从而实现如下效果: 与的形状(在投射到阵列)是。但是,由于速度的原因,列表实现是不可能的。 我尝试了各种换位的np.dot,但最终结果没有得到正确的形状。 问题答案: 使用 脚步 : 1)保持第一根轴对