一、 前言
Three.js 是一款 webGL(3D绘图标准,在此不赘述)引擎,可以运行于所有支持 webGL 的浏览器。Three.js 封装了 webGL 底层的 API ,为我们提供了高级的开发接口,可以使用简单的代码去实现 3D 渲染。(官网:https://threejs.org/)
二、 为什么要选择Three.js?
Three.js 作为原生 web3D 引擎,对插件式 web3D 引擎的优势不言而喻:不需要安装插件、在移动端支持好。
Three.js 与其他原生 web3D 引擎对比:
相对这些 web3D 引擎,Three.js 的还有以下几点优势:
我们可以根据自己的需要去选择web3D引擎。
三、 开始Three.js
1、 引导
在开始我们的第一个 3D 程序之前,我们需要了解 Three.js 的一些基础,以下是 Three.js 制作 3D 的五要素:
1、渲染器(render)
我们可以把渲染器想想成为一个画布,我们需要在这个画布上去画出我们需要展示的东西。
2、场景(scene)
相当于一个空间,我们需要将展示的东西放在这个空间里,然后再在画布上绘制出来。
3、照相机(camera)
相当于眼睛,我们想要看到物体,就需要眼睛去看。
4、光源(light)
物体需要光照才能看见,不然就是漆黑一片(但是在某些情况下展示物体不需要光源)。
5、物体(object)
我们想要表现的内容,会有形状和材质属性。
了解了五要素之后,就可以开始写我们的代码了。
2、 创建渲染器
首先,我们创建一个渲染器。创建渲染器有两种方式:
a. 在 html 上写出 canvas 元素
<canvas id="mainCanvas" width="600px" height="450px" ></canvas> 然后创建渲染器时绑定此元素 var renderer = new THREE.WebGLRenderer({ canvas: document.getElementById('mainCanvas') }); renderer.setClearColor(“#000”); // 设置渲染器背景为黑色
b. html 上不创建 canvas 元素,而是使用普通的元素作为容器
<div id="mainCanvas" style="width:600px;height:450px;" ></div> 然后创建渲染器,放入容器中 var canvasContainer = document.getElementById('mainCanvas'); var width = canvasContainer.clientWidth; //获取画布的宽 var height = canvasContainer.clientHeight; //获取画布的高 var renderer = new THREE.WebGLRenderer({ antialias: true //抗锯齿开 }); renderer.setSize(width, height); //设置渲染器的宽和高 renderer.setClearColor(0x000000); //设置渲染器的背景颜色为黑色 var canvas = renderer.domElement; //获取渲染器的画布元素 canvasContainer.appendChild(canvas); //将画布写入html元素中
这样,我们的渲染器就创建成功了。创建渲染器时,还可以设置多个属性,比如抗锯齿、透明度等等,详见 three.js 官方文档。
3、 创建场景
渲染器创建之后,我们再创建场景,准备将我们需要绘制的东西放入场景。
var scene = new THREE.Scene();
4、 创建照相机
照相机常用的有两种,一种叫正投影相机:
THREE.OrthographicCamera( left, right, top, bottom, near, far );
下图为该照相机的视野:
一种叫做透视照相机:
THREE.PerspectiveCamera( fov, aspect, near, far ) ;
下图为该照相机的视野:
下图为两个照相机展示效果的对比:
**左边为正投照相机,远近大小都一样;右边为透视照相机,远小近大,更接近于人眼观察物体的感觉。**
在此以正投照相举例:
var camera = new THREE.OrthographicCamera(-6, 6, 4.5, -4.5, 0, 50); //创建照相机 camera.position.set(35, 15, 25); //设置照相机的位置 camera.lookAt(new THREE.Vector3(0, 0, 0)); //设置照相机面向(0,0,0)坐标观察
照相机默认坐标为(0,0,0);
默认面向为沿z轴向里观察;
5、 创建光源
常用光源有:
1、平行光(DirectionalLight),效果类似太阳光
DirectionalLight ( color, intensity )
color — 光源颜色的RBG数值。
intensity — 光强的数值。
2、点光源(PointLight),效果类似灯泡
PointLight ( color, intensity, distance, decay )
color — 光源颜色的RBG数值。
intensity — 光强的数值。
distance -- 光强为0处到光源的距离,0表示无穷大。
decay -- 沿着光照距离的衰退量。
3、聚光光源(SpotLight),效果类似聚光灯
SpotLight ( color, intensity, distance, angle, penumbra, decay )
color — 光源颜色的RBG数值。
intensity — 光强的数值。
distance -- 光强为0处到光源的距离,0表示无穷大。
angle -- 光线散射角度,最大为Math.PI/2。
penumbra -- 聚光锥的半影衰减百分比。在0和1之间的值。默认为0。
decay -- 沿着光照距离的衰退量。
在此以点光源举例:
var light = new THREE.PointLight(0xffffff, 1, 100); //创建光源 light.position.set(12, 15, 10); //设置光源的位置 scene.add(light); //在场景中添加光源
6、 创建物体
制作物体的方法是 Mesh:
new THREE.Mesh(Geometry, Material);
Geometry 为物体的形状,Material 为物体的材质;
1、形状(Geometry)
three.js 给出了很多方法去生成固定的形状,比如长方体(BoxGeometry)、球体(SphereGeometry)、圆形(CircleGeometry)等等。还有根据坐标去生成具体形状的方法,可以借助第三方建模软件建模之后引入,转换为坐标后再生成,就可以做比较复杂的形状了,比如人脸、汽车等等。
在此以长方体为例生成形状:
//设置正方体宽度,高度,深度分别为5,5,5 var geometry = new THREE.BoxGeometry (5, 5, 5);
2、材质(Material)
材质就像是物体的皮肤,决定物体外表的样子,例如物体的颜色,看起来是否光滑,是否有贴图等等。
常用材质有:
·网格基础材质(MeshBasicMaterial)
该材质不受光照的影响,不需要光源即可显示出来,设置颜色后,各个面都是同一个颜色。
·网格法向材质(MeshNormalMaterial)
该材质不受光照的影响,不需要光源即可显示出来,并且每个方向的面的颜色都不同,同但一个方向的面颜色是相同的,
该材质一般用于调试。
·网格朗博材质(MeshLambertMaterial)
该材质会受到光照的影响,没有光源时不会显示出来,用于创建表面暗淡,不光亮的物体。
·网格 Phong 材质(MeshPhongMaterial)
该材质会受到光照的影响,没有光源时不会显示出来,用于创建光亮的物体。
在此以网格 Phong 材质为例创建材质:
var material = new THREE.MeshPhongMaterial({ color: "yellow" //设置颜色为yellow });
创建形状和材质之后,就可以创建该物体了:
//创建物体 var cube = new THREE.Mesh(geometry, material);
7、 渲染画布
通过以上步骤,我们已经有了渲染器(renderer)、场景(scene)、照相机(camera)、光源(light)和物体(cube),此时我们需要将光源和物体加入场景中:
scene.add(light); scene.add(cube);
然后再使用渲染器将场景和照相机渲染出来:
renderer.render(scene, camera);
效果如下图:
四、 结束语
在以上内容中,只写到了 Three.js 中提供的基础功能,还有很多高级的功能需要大家去探索。希望大家看完这篇文章后能对 Three.js 有一个初步的了解,并能够使用 Three.js 绘制出基础的 3D 图形。
大家可以去 Three.js 官网的 examples 中看看,这里面都是一些很优秀和典型的 examples,并且还有代码可以下载,大家可以去研究探索一番。
在此附上几个精彩的例子供大家欣赏:
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对小牛知识库的支持。
问题内容: 使用python的matplotlib绘制3d图形时出现问题。使用以下python函数,我得到了这个图: 在这里,有孔栅格和和的功能和。代表表面颜色。 但是现在我想水平切割该图,仅保留z在-1和2之间的部分。 我想要的,用gnuplot绘制的是这样的: 我尝试了和,但是它们都没有给我想要的数字。有人知道如何使用python吗? 问题答案: 你在那里有漂亮的圆锥形交叉点:) 您要尝试
本文向大家介绍Android开发 OpenGL ES绘制3D 图形实例详解,包括了Android开发 OpenGL ES绘制3D 图形实例详解的使用技巧和注意事项,需要的朋友参考一下 OpenGL ES是 OpenGL三维图形API 的子集,针对手机、PDA和游戏主机等嵌入式设备而设计。 Ophone目前支持OpenGL ES 1.0 ,OpenGL ES 1.0 是以 OpenGL 1.3 规范
关于矢量图形 矢量图形(有时称作矢量形状或矢量对象)是由称作矢量的数学对象定义的直线和曲线构成的。矢量根据图像的几何特征对图像进行描述。 您可以任意移动或修改矢量图形,而不会丢失细节或影响清晰度,因为矢量图形是与分辨率无关的,即当调整矢量图形的大小、将矢量图形打印到 PostScript 打印机、在 PDF 文件中保存矢量图形或将矢量图形导入到基于矢量的图形应用程序中时,矢量图形都将保持清晰的边缘
本文向大家介绍Android自定义控件绘制基本图形基础入门,包括了Android自定义控件绘制基本图形基础入门的使用技巧和注意事项,需要的朋友参考一下 本文讲述绘制Android自定义各种图形效果,为自定义控件的入门篇 相关视频链接: Android自定义控件系列 http://edu.csdn.net/course/detail/3719/65396 Android视频全系列 http://ed
本文向大家介绍PHP实现绘制3D扇形统计图及图片缩放实例,包括了PHP实现绘制3D扇形统计图及图片缩放实例的使用技巧和注意事项,需要的朋友参考一下 1、利用php gd库的函数绘制3D扇形统计图 效果: 2、对图片进行缩放 效果:
图形设备接口(GDI:Graphics Device Interface)是Windows的子系统,它负责在视讯显示器和打印机上显示图形。正如您所认为的那样,GDI是Windows非常重要的部分。不只您为Windows编写的应用系统在显示视觉信息时使用GDI,就连Windows本身也使用GDI来显示使用者接口对象,诸如菜单、滚动条、图标和鼠标光标。 不幸的是,如果要对GDI进行全面的讲述,将需要一