问题答案可关注公众号 机器学习算法面试,回复“资料”即可领取啦~~ 1.机器学习理论 1.1 数学知识 1.1.1 机器学习中的距离和相似度度量方式有哪些? 1.1.2 马氏距离比欧式距离的异同点? 1.1.3 张量与矩阵的区别? 1.1.4 如何判断矩阵为正定? 1.1.5 距离的严格定义? 1.1.6 参考 1.2 学习理论 1.2.1 什么是表示学习? 1.2.2 什么是端到端学习? 1.2
Index 基本遵从《统计学习方法》一书中的符号表示。 除特别说明,默认w为行向量,x为列向量,以避免在wx 中使用转置符号;但有些公式为了更清晰区分向量与标量,依然会使用^T的上标,注意区分。 输入实例x的特征向量记为: 注意:x_i 和 x^(i) 含义不同,前者表示训练集中第 i 个实例,后者表示特征向量中的第 i 个分量;因此,通常记训练集为: 特征向量用小n表示维数,训练集用大N表示个数
前言: 岗位:机器学习算法实习 笔试情况:无笔试 一面 1.自我介绍(非科班硕,一份水实习); 2.介绍项目,并由此引出一系列八股文: 介绍gbdt算法的原理与实现 说说xgboost对于gbdt所做的主要优化 3.介绍实习工作 简单介绍resnet及其主要改进(shortcut连接,BN层),说说这些改进为什么work 介绍transformer及self-attention机制实现方式 了解哪
时长:1h 1.自我介绍 2.选了个实习深挖,这部分问了蛮多的,从流程到实现,每部分的输入输出等等 3.根据我的研究方向,问了一些经典的算法和最新的一些前沿成果(这部分拉了坨大的,面试官说我说的那些东西在他上学那会就有了) 4.注意力机制的计算公式?为什么除以根号dk? 5.了解推荐模型嘛?知道哪些模型? 6.手撕:和为k的连续子数组(面试官口述的问题,一开始理解成输出数量,结果是要输出所有的数组
50分钟 第一份工作更看重什么? 职业规划? 最近遇到的挑战 优缺点 了解哪些多模态 为什么blip除sa外参数共享 有碰到模型出的图都是全白或者全黑的吗,怎么解决 你更偏向于做哪个方向? python装饰器 混合精度训练是什么 Sdxl和1.5区别 Clip最终输出维度多少 vae缩放系数多少 训练注入了哪些条件信息?为什么要注入这些信息? Sdxl有什么问题吗 怎么解决 Dalle了解吗 训过
一共50分钟左右,基本没八股 1.自我介绍 2.挑一个项目详细介绍一下,我介绍了一下我的RAG的项目,吟唱完面试官说提问几个重要的点,第一个问了一下数据集怎么构建的,第二个问了一下大模型怎么解决幻觉问题,第三个问我数据集构建问答切分怎么考虑语义问题 3.让我详细介绍另一个项目,我另一个项目是论文项目,吟唱完面试官又提问几个重要的点,第一个问我论文里情绪划分详细怎么做的,第二个问我共情怎么定义的,都
7.14 一面 一面全部是写代码,连自我介绍都没有😂 - 快速幂(easy)扩展问题:python如何处理数据溢出? - 用pytorch实现单头self-attention(mid+),之后问了self-attention的细节和一些扩展理解 - 一个数组,如果前面的数大于后面的数的二倍,则记作一个翻转对,求翻转对的个数(hard)其实是逆序对的变种,实现归并之后稍微改改就行 7.20 二面
感知机可以理解为几何中的线性方程:w*x+b=0 对应于特征空间 R^n 中的一个超平面 S ,其中 w 是超平面法向量,b 是超平面的截距。这个超平面将特征空间划分为两个部分。位于两部分的点(特征向量)分别被分为正、负两类。
本教程将全面介绍深度学习从模型构造到模型训练的方方面面,以及它们在计算机视觉和自然语言处理中的应用。
二面挂 总时长1.5h,面试45min,剩下时间手撕 面试大概问题: 1.讲数据挖掘比赛的过程 2.连续字段怎么转换为离散字段 3.讲一个困难的经历是如何解决并分工的 4.讲一个自己熟悉的网络框架 5.L1正则和L2正则 6.多模态数据怎么利用,模型怎么设计 其他的记不清了 反问环节: 1.部门做什么的 2.用的主要方法是什么 手撕代码,两问: 1.给定函数f(x) = 1.2 x^2 - 0.8
一面 3.21 问项目:问了一个项目,问的非常详细,大概问了30min 然后问基础: transformer的架构 为什么使用multi-head、残差链接和前馈神经网络层 梯度消失的原因是什么 gpt和t5的区别 bert和t5的区别 了解现有的大模型,比如LLaMa这些吗 代码:删除链表倒数第k个节点,需要考虑到k>链表长度这个边界情形
背景:211本硕,一作SCI一区论文两篇,无实习。 9.14(一面) 面试官没露脸,听声音是女生,上来先让做个自我介绍。 然后说:“说下你的论文吧。欸?你没准备PPT吗?” 我内心:??????且不说邮件里没这要求,就算有,你前一天晚上才给我发的面试通知我上哪给你弄PPT去? 然后还是耐心和她说:”我对着论文讲可以嘛?” 她无语地说:“行吧。” 然后就是漫长地边讲边解释的过程,她似乎是对我的方向基
全程35分钟,是个女面试官,感觉气场上应该是个部门主管;无手撕算法 1.先介绍了部门情况,第一次见面试官先自我介绍的,感觉确实是个领导,有亲和力 2.自我介绍 3.拷打第一个项目,我本来想共享屏幕对着模型图讲,结果面试官说不用,我就直接讲;这个面试官理解能力很强,我讲的她基本直接就懂了,之前有的面试官要问我好几遍;然后提了一些问题 4.拷打第二个项目,主要介绍了项目整体以及一些亮点,然后问了我幻觉
全程50分钟,这次是女面试官,人很好,不怎么拷打,开始时先介绍了面试流程 1.自我介绍 2.介绍第一个项目,我的是一个RAG的项目,吟唱完让我说一下项目的两个亮点,我就介绍了语义感知的文本切分和缓解幻觉的两个点,又提问了一些问题 3.介绍第二个项目,我的是一个论文项目,我直接共享桌面对着模型图讲了一遍,当然中间也穿插着提问,殊不知这次共享有几率让我寄掉 4.问一个基础问题,面试官问了我transf
全程45分钟左右,目测面试官是个主管 1.自我介绍 2.介绍实习经历,首先让我介绍一下整体业务,然后拷打数据构建部分,然后让我介绍一下vllm,然后让我说一下大模型幻觉问题怎么解决,然后让我介绍一下大模型跟bert那种相比结构有什么改进 3.第二第三个项目都是我介绍了一下,就没有了 4.代码题,写二叉树的前序遍历,用递归和非递归实现 5.问一些其他的问题,问我在小米和网易实习哪个好,让我说出两个网