2022/09/23 投递简历 2022/09/29 笔试 2022/10/24 技术一面 1、自我介绍,讲了项目及竞赛经历(不到5min) 2、提问: (1)本科、研究生数学类有哪些课程(?); (2)详细说下数学建模竞赛经历,问建模团队分工及问题实际解决方法; (3)我项目中有模型轻量化工作,问具体怎么轻量化,轻量化相关技术; (4)入职3-5年的发展计划(回答主要是偏向累计技术); (5)平
2023.03.20更新:最近推荐了好几个同学,都进了面试流程。22、23年毕业的都可以算应届生,都可以内推。社招也可以招,现在通信算法岗还有大量HC,有兴趣的可以私信我。 最近成功拿到了新凯来的offer,在今年这个行情下给出了不错的薪资,所以就毫不犹豫的接受啦,结束了俺这几个月的找工作之旅。 听HR说现在通信算法岗还有不少HC,还在找工作的同鞋们可以冲一波,HR给了我内推资格,
上午在床上睡觉接到电话说要面试,推到下午了 时长:40min 1.自我介绍 2.项目深挖,问到了两个项目,主要包括背景,模型流程等 3.八股: 1)如何判断一个模型过拟合或者欠拟合? 2)如何解决过拟合? 3)L1L2正则有什么效果? 4.反问: 1)部门业务:菜鸟APP的推荐内容 2)是否介意没有相关背景的同学 3)后续流程?1-2轮技术面+hr面 4)base地情况 挺好的,面完秒挂
一共只面了两轮,9.3一面,9.9二面,没有HR面,9.20 OC 一面/技术面 2024/9/3 晚上20:00-21:00 自我介绍 腾讯实习介绍 实习过程中做的比较好的部分有哪些 华为框架以及NPU使用过程中遇到的问题 LongLoRA和LoRA区别 大模型和推荐你觉得有哪些可结合的点?商品的理解、描述等 介绍快手实习 在线的效果 这段实习主要的难点在哪里 user会事先做一些embeddi
2024.9.04 投递简历 无损检测工程师(杭州) 双9机械类专业 9.19 一面:30min (技术面) 使用牛客的面试平台,面试前先加了钉钉群,叫号进面试间 1、常规自我介绍 2、询问专业情况、学生干部、研究方向 3、问简历、实习、项目,与无损检测、故障诊断相关的 传感器选型、系统算法的实现、为什么不在现场部署ai算法?等等 4、对于这个方向的未来发展有什么看法? 5、你认为自己相比其他应聘
2024/08/29 14:00(50分钟) 这个岗位是学长内推的,不是我研究的方向所以没有项目,一面也没有八股啥的,主要考察了下代码能力和思考问题的能力吧 手撕:判断序列能否划分成两个和相等的子集(背包),网格路径最小(动态规划) 还一个概率论的题目就不透露了
#如何判断面试是否凉了#7.30 快手 50min 7.31约2面了在8.6 人生第一次计算机大厂面试,写详细了点 ### **【快Star】大模型应用算法工程师** 先让自我介绍,尴尬的是我直接按时间顺序先有点详细地介绍非大模型的CV什么项目了 于是在快到llm项目前被打断了,面试官说我来问吧 介绍RAG项目里面出现的BM25,我从TFIDF开始介绍,前面很流利, 后面BM25的那个词与quer
一面 1. 自我介绍 2. 介绍项目 3. 推荐系统离线都看什么指标,这些指标有冲突怎么办? 4. 新item如何做冷启? 5. pointwise, pairwise, listwise区别?为什么精排用pointwise 6. 如何提高推荐的多样性? 7. 排序模型离线指标和线上不一致如何处理? 8. 推荐上怎么引入搜索的一些相关信息? 9. leetcode 143:重排链表 #美团2024
电话面+邮箱发alitcode链接进行coding考察 ----------------------------------------------------------------------------------------------------------- 没有让做自我介绍,直接对着简历问项目。 第一个项目是用seq-to-seq做的缺陷自动修复,问我将NLP应用到软工领域有什么痛点
面试官是做算法服务开发,也就是工程化落地的,但是总感觉他无精打采的样子。全程 35 分钟,能有 33.5 分钟都是让我输出,讲了很多实习项目,但是基本不深入问,点到为止,我就像讲单口相声一样。 Intern: B 站和百度实习项目 & 自己的工作 & 个人收获 Deep Learning: 介绍一下 Transformer 什么是多头注意力机制、在模型推理上有什么优势 并行训练时如何拆分多头注意力
本以为这个岗位会面大模型,没想到全是问传统NLP任务。 1. 深挖实习(解决了什么问题,如何解决,以及评估效果如何?) 2. 是否熟悉序列标注任务?能否举例说明NER任务的输入输出是什么?(坦诚告诉面试官之前没做过,但是面试官并没有放过我,在随后的时间里便围绕这个问题疯狂拷打我) 3. 如何从电商数据(关于手机的)中抽取品牌、颜色、内存等信息?请提供一个方案,解释数据标注、模型选型、模型训练和结果
写面经攒人品 一面6/5,20分钟。简单聊了学习成绩,竞赛奖项,问了计网的TCP握手过程,简单聊了项目,最后说了下笔试题的最后一题,判断是否有环形链表。 二面6/11,40分钟。上来先做智力题,n个硬币,有AB两个人,A先取1-3枚,B也可以取1-3枚,求问A是不是必赢。 然后就是和谐子数组长度,其他面经也有写。我说了个暴力法,然后让我优化,用hashmap即可。然后要求共享屏幕IDE上写你的优化
听说你正在准备极智嘉算法工程师面试,但是却无从下手?不知道怎样准备才能赢得面试官的“芳心”? 不要担心,极智嘉校招Tips专为你破解校招难题!有想问的,想听的,也可以在评论区留言! 话不多说,成功上岸极智嘉的小G为你奉上第二讲干货:如何准备好算法工程师岗位面试? 准备极智嘉算法工程师面试,你需要... 算法能力: 应该熟练掌握常见的算法并且能够快速的写出来,要知道,面试官可是没有太多的时间等你来写
先针对实习内容进行了了解,问了一些开放性的问题 因为我没有论文,所以问的项目 先问我哪个项目最值得一说,细讲一下,针对细节进行提问 再对其他项目简单了解一下 八股:网络中通常用的上采样的方法(模块) (脑袋懵)两个问题没回答出来:3Dlut插值方法、反卷积两倍上采样的参数怎么设置 感觉基础没回答上来很丢分,吃一堑长一智吧
1、八股:项目里用的优化器和学习率更新策略,优化器原理和学习率更新 2、问ffmgeg和Linux的操作(因为简历里写到了熟悉常用操作) 3、针对项目,问细节,会引入实际应用的场景,想方案或者自己的看法 比如说: 多曝光融合的时候,怎么在端到端的框架里设计一个模块,选择好的、互补的曝光图参与后续的特征融合 3Dlut的了解和改进 全程1个小时,面试官很专业,我觉得我不配哈哈哈哈