我们经常会从样本观察数据中,找出样本的模型参数。 最常用的方法就是极大化模型分布的对数似然函数。 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参数。怎么办呢?这就是EM算法可以派上用场的地方了。 EM算法解决这个的思路是使用启发式的迭代方法,既然我们无法直接求出模型分布参数,那么我们可以先猜想隐含数据(
DBSCAN是一种基于密度的聚类算法,这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样本,他们之间的紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在。 通过将紧密相连的样本划为一类,这样就得到了一个聚类类别。通过将所有各组紧密相连的样本划为各个不同的类别,则我们就得到了最终的所有聚类类别结果。 2. DBSCAN密度定义 在上一节我们定性描述了密度聚类
BIRCH的全称是利用层次方法的平衡迭代规约和聚类(Balanced Iterative Reducing and Clustering Using Hierarchies),名字实在是太长了,不过没关系,其实只要明白它是用层次方法来聚类和规约数据就可以了。刚才提到了,BIRCH只需要单遍扫描数据集就能进行聚类,那它是怎么做到的呢? BIRCH算法利用了一个树结构来帮助我们快速的聚类,这个数结构类
决策树生成算法 ID3算法 ID3算法的核心是在决策树各个节点上应用信息增益准则选择特征,递归地构建决策树。 具体方法是:从根节点开始,对节点计算所有可能的特征的信息增益,选择信息增益最大的特征作为节点的特征,由该节点的不同取值建立子节点。再对子节点递归使用同样的方法,构建决策树,直到所有特征的信息增益均很小或者没有特征可以选择为止。 输入:训练数据集$$D$$,特征集$$A$$,阈值$$\var
部分参考了《Think Python 2e 中译本 第二十一章:算法分析》 算法分析 (Analysis of algorithms) 是计算机科学的一个分支, 着重研究算法的性能, 特别是它们的运行时间和资源开销。见 http://en.wikipedia.org/wiki/Analysis_ofalgorithms 。 算法分析的实际目的是预测不同算法的性能,用于指导设计决策。 2008年美国
我们在前面的章节中看到,Java 提供了两种List接口的实现,ArrayList和LinkedList。对于一些应用,LinkedList更快;对于其他应用,ArrayList更快。 要确定对于特定的应用,哪一个更好,一种方法是尝试它们,并看看它们需要多长时间。这种称为“性能分析”的方法有一些问题: 在比较算法之前,你必须实现这两个算法。 结果可能取决于你使用什么样的计算机。一种算法可能在一台机
雪花算法 类型:SNOWFLAKE 可配置属性: 属性名称 数据类型 说明 默认值 worker-id (?) long 工作机器唯一标识 0 max-vibration-offset (?) int 最大抖动上限值,范围[0, 4096)。注:若使用此算法生成值作分片值,建议配置此属性。此算法在不同毫秒内所生成的 key 取模 2^n (2^n一般为分库或分表数) 之后结果总为 0 或 1。为防
标准库的算法部分进行了如下改进:新增了一些算法函数;通过新语言特性改善了一些算法实现并且更易于使用。下面分别来看一些例子: 新算法: bool all_of(Iter first, Iter last, Pred pred); bool any_of(Iter first, Iter last, Pred pred); bool none_of(Iter first, Iter last, Pre
本书围绕大学生计算机算法,收集和整理了比较常见的算法与数据结构写成。借鉴了一些经典的算法书籍,和互联网上的资料。本书通过数学公式和图画的方式来描述算法,并配备源码实现、测试用例,以及一些在Online Judge网站上的题目,来帮助读者真正理解算法。
数据结构是存储数据的编程方式,因此可以有效地使用数据。 几乎每个企业应用程序都以一种或另一种方式使用各种类型的数据结构。
介绍 imi 框架的雪花算法生成组件 Github: https://github.com/imiphp/imi-snowflake Composer 本项目可以使用composer安装,遵循psr-4自动加载规则,在你的 composer.json 中加入下面的内容: { "require": { "imiphp/imi-snowflake": "~1.0" }
前言 最近的几个月一直在研究和学习各种经典的DM,机器学习的相关算法,收获还是挺多的,另外还整了一个DM算法库,集成了很多数据挖掘算法,放在了我的github上,博友的热度超出我的想象,有很多人给我点了star,在此感谢各大博友们,我将会继续更新我的DM算法库。也许这些算法还不能直接拿来用,但是可以给你提供思路,或变变数据的输入格式就能用了。好,扯得有点远了,现在说正题,本篇文章重新回到讲述Apr
参开资料:http://blog.csdn.net/haidao2009/article/details/7514787 更多挖掘算法:https://github.com/linyiqun/DataMiningAlgorithm 介绍 在介绍AdaBoost算法之前,需要了解一个类似的算法,装袋算法(bagging),bagging是一种提高分类准确率的算法,通过给定组合投票的方式,获得最优解。
参考资料: http://blog.csdn.net/zouxy09/article/details/8537620 http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 我的数据挖掘算法代码实现: https://github.com/linyiqun/DataMiningAlgorithm 介绍 em算法是一种迭代算法
Lucene默认的打分算法 当谈论到查询的相关性,很重要的一件事就是对于给定的查询语句,如何计算文档得分。首先要弄清楚的是文档得分是什么。文档得分是一个用来描述查询语句和文档之间匹配程度的变量。在本节,我们将学习Lucene默认的打分机制:TF/IDF(term frequency/inverse document frequecy)算法,以及它是如何对相关文档进行打分排序。理解默认的打分算法对设