Go
和Python
平铺嵌套JSON,结果发现Go
竟然比Python
还要慢,这对于Go
新手来说简直是刷新认识,请问Go
更慢的原因是什么,如何改进?
此文无意引战,所以没有选择Python
标签,请巨佬告诉我如何改进Go
代码,我相信Go
是更快且应该是快很多的。
{ "first": "Dale", "last": "Murphy", "age": 44, "nets": ["ig", "fb", "value1", "value2"], "submap": { "subfirst": "Dale", "sublast": ["Murphy", "value3", "value4"], "subsub":{"subsub":["value5","value6","value7","value8","value9"]} }}
[{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"Murphy","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"Murphy","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"Murphy","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"Murphy","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value3","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value3","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value3","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value3","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value4","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value4","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value4","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value4","subsub":"value5"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"Murphy","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"Murphy","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"Murphy","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"Murphy","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value3","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value3","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value3","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value3","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value4","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value4","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value4","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value4","subsub":"value6"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"Murphy","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"Murphy","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"Murphy","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"Murphy","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value3","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value3","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value3","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value3","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value4","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value4","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value4","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value4","subsub":"value7"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"Murphy","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"Murphy","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"Murphy","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"Murphy","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value3","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value3","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value3","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value3","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value4","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value4","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value4","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value4","subsub":"value8"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"Murphy","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"Murphy","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"Murphy","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"Murphy","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value3","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value3","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value3","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value3","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"ig","subfirst":"Dale","sublast":"value4","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"fb","subfirst":"Dale","sublast":"value4","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"value1","subfirst":"Dale","sublast":"value4","subsub":"value9"},{"first":"Dale","last":"Murphy","age":"44","nets":"value2","subfirst":"Dale","sublast":"value4","subsub":"value9"}]
CHATGPT
给的Go
代码package mainimport ( "encoding/json" "fmt" "time")func flattenJson(b []byte) ([]map[string]interface{}, error) { var jsonObj map[string]interface{} err := json.Unmarshal(b, &jsonObj) if err != nil { return nil, err } return flatten(jsonObj, make(map[string]interface{})), nil}func flatten(jsonObj map[string]interface{}, result map[string]interface{}) []map[string]interface{} { tempResults := []map[string]interface{}{make(map[string]interface{})} for k, v := range jsonObj { switch value := v.(type) { case map[string]interface{}: nestedResults := flatten(value, result) newTempResults := []map[string]interface{}{} for _, nested := range nestedResults { for _, item := range tempResults { newItem := make(map[string]interface{}) for key, val := range item { newItem[key] = val } for key, val := range nested { newItem[key] = val } newTempResults = append(newTempResults, newItem) } } tempResults = newTempResults case []interface{}: newTempResults := []map[string]interface{}{} for _, elem := range value { for _, item := range tempResults { newItem := make(map[string]interface{}) for key, val := range item { newItem[key] = val } newItem[k] = elem newTempResults = append(newTempResults, newItem) } } tempResults = newTempResults default: for _, item := range tempResults { item[k] = value } } } // Merge each item with result finalResults := []map[string]interface{}{} for _, item := range tempResults { newItem := make(map[string]interface{}) for key, val := range result { newItem[key] = val } for key, val := range item { newItem[key] = val } finalResults = append(finalResults, newItem) } return finalResults}func main() { start := time.Now() jsonData := []byte(`{ "first": "Dale", "last": "Murphy", "age": 44, "nets": ["ig", "fb", "value1", "value2"], "submap": { "subfirst": "Dale", "sublast": ["Murphy", "value3", "value4"], "subsub":{"subsub":["value5","value6","value7","value8","value9"]} }}`) for i := 0; i < 100000; i++ { flattenJson(jsonData) } fmt.Println(time.Since(start))}// (base) C:\abc>go run stsd.go // 4.287609s// (base) C:\abc>go run stsd.go// 4.513107s// (base) C:\abc>go run stsd.go// 4.1299503s// (base) C:\abc>go version// go version go1.21.4 windows/amd64
Python
实现代码import time,jsondef flattenjson(json_obj, normalresult=None): if normalresult is None: normalresult = {} # 用于存储处理过程中的临时结果 temp_results = [{}] for k, v in json_obj.items(): if isinstance(v, dict): # 递归处理嵌套字典,并合并结果 nested_results = flattenjson(v) temp_results = [dict(item, **nested) for nested in nested_results for item in temp_results] elif isinstance(v, list): # 处理列表,为每个元素创建新的字典 temp_results = [dict(item, **{k: j}) for j in v for item in temp_results] else: # 处理普通键值对,加入到临时结果中 for item in temp_results: item[k] = v # 将普通结果合并到每个字典中 final_results = [dict(item, **normalresult) for item in temp_results] return final_resultsif __name__ == '__main__': start = time.time() jsonstr = """{ "first": "Dale", "last": "Murphy", "age": 44, "nets": ["ig", "fb", "value1", "value2"], "submap": { "subfirst": "Dale", "sublast": ["Murphy", "value3", "value4"], "subsub":{"subsub":["value5","value6","value7","value8","value9"]} } }""" for _ in range(100000): flattenjson(json.loads(jsonstr)) print(time.time()-start)# (base) C:\abc>python test.py# 3.2182690620422363# (base) C:\abc>python test.py# 3.291424560546875# (base) C:\abc>python test.py# 3.239586067199707# (base) C:\abc>python# Python 3.10.9 | packaged by Anaconda, Inc. | (main, Mar 1 2023, 18:18:15) [MSC v.1916 64 bit (AMD64)] on win32# Type "help", "copyright", "credits" or "license" for more information.# >>>
Go
,AI已经无法解答了You:
同样的 json 数据,我测试 100000 次平铺,为什么 python 的速度比 go 还要快?
AI:
Python 比 Go 更快的情况在特定场景下是可能的,尽管 Go 通常在性能上优于 Python,特别是在并发和系统级编程方面。以下是一些可能导致这种情况的原因:
实现细节: Python 和 Go 代码的实现方式可能有所不同,这可能导致性能差异。即使逻辑相同,语言特性和内部优化也会影响性能。 Python 的一些内置函数(如 itertools.product)可能经过高度优化,而 Go 代码可能没有使用同等优化的库或方法。数据结构和算法: 使用的数据结构和算法可能在两种语言中有细微差异,这可能会影响性能。解释器 / 编译器优化: Python 解释器(如 CPython)和 Go 编译器采用不同的优化策略,这些策略可能在特定情况下影响性能。垃圾收集: Go 语言有一个运行时垃圾收集器,可能会影响性能。Python 也有垃圾收集,但其行为可能与 Go 不同。启动时间: 对于非常短的运行时间,Python 程序的启动时间可能相对较短,而编译型语言(如 Go)的程序启动时间可能较长。测试环境: 测试的硬件和操作系统环境可能对性能有影响。 测试方法(如是否预热、是否包括编译时间等)也会影响结果。
为了更准确地比较性能,建议:
确保测试在相似的环境和条件下进行。仔细审查和优化 Go 代码,确保它是高效的。进行多次测试并取平均值,以减少偶然性的影响。如果可能,使用性能分析工具查看代码的热点和潜在的性能瓶颈。
性能测试是复杂的,结果可能因多种因素而异,确保测试的公平和准确性非常重要。
You:
是不是大量接口导致性能下降?
AI:
在 Go 语言中,使用接口(interface)可能会对性能产生一定影响,但这种影响通常是非常微小的。接口在 Go 中是一种强大的特性,允许实现多态和灵活的代码设计。但是,它们确实带来了一些额外的开销,尤其是在涉及大量数据处理和高频调用时。以下是一些使用接口可能影响性能的情况:
动态分派:当您通过接口调用方法时,Go 需要在运行时确定要调用的具体方法实现。这个查找过程称为动态分派,它稍微慢于静态类型的直接方法调用。类型断言和类型检查:如果您经常需要对接口类型进行类型断言以访问具体的类型,这可能会导致性能开销。额外的间接层:接口引入了一个额外的间接层,因为它们通过指针引用具体的值。这意味着额外的内存解引用操作,可能会稍微影响性能。内存分配:在某些情况下,使用接口可能导致额外的堆内存分配,特别是当它们用于包装小的值类型时。垃圾回收:由于接口可能指向堆上分配的对象,因此可能会增加垃圾收集器的工作量。
在大多数情况下,这些开销都非常小,不太可能成为性能瓶颈。但是,在一些极端情况下(如大量数据处理或高频率调用),这些开销可能变得显著。
如果您怀疑接口是性能问题的原因,可以通过以下方式进行优化:
性能分析:使用 Go 的 pprof 工具进行性能分析,找出性能瓶颈的确切位置。减少接口使用:在性能关键的部分考虑使用具体类型替代接口。避免不必要的类型断言:减少类型断言的使用,尤其是在循环或频繁调用的代码块中。
总的来说,除非您正在处理大量数据或需要极高的性能,否则接口带来的开销通常是可以接受的,并且它们为代码的灵活性和可维护性带来了巨大的好处。
You:
GO 的实现有没有更高效的方法?
AI:
要提高 Go 语言中特定代码的性能,尤其是涉及 JSON 处理和数据转换的代码,您可以采取以下几种策略:
优化数据结构: 使用更高效的数据结构可以显著提高性能。例如,使用切片而非映射,或选择更适合特定场景的数据结构。减少内存分配: 避免不必要的内存分配,如重复创建对象或频繁的切片扩展。您可以预先分配足够大的空间或复用已有的对象。并行处理: 如果您的任务可以并行化,使用 Go 的并发特性(goroutines 和 channels)来分散工作可以显著提高效率。优化循环和递归: 优化循环逻辑,减少循环内部的计算和函数调用。在递归函数中,确保没有不必要的重复计算。使用更高效的库: 选择性能更好的第三方库进行 JSON 解析和处理。比如,json-iterator/go 通常比标准库中的 encoding/json 提供更好的性能。减少接口使用: 如果可能,减少接口的使用,特别是在性能关键的代码路径中。使用具体类型可以避免接口带来的间接性和动态分
You:
用 json-iterator/go 改进之前的代码
AI:
要使用 json-iterator/go 库来改进之前的代码,首先需要安装这个库。然后,您可以将标准的 encoding/json 解析替换为 json-iterator/go 的解析,以提高 JSON 处理的效率。json-iterator/go 是一个高性能的 JSON 解析器,它完全兼容标准库,但通常提供更快的解析速度。
.....
结果速度和使用标准库encoding/json没有明显变化。
粗略的看了一下代码,使用了反射, 在go中反射是非常消耗性能与相对于而言会比较慢的,
第一个原因是用于反射的reflect.Type信息需要动态生成。当我们使用Golang反射机制时,编译器需要动态生成一些辅助结构体来保存调用时的上下文信息。这些结构体中的字段数量与复杂度都取决于反射的使用情况。因此,如果我们在编写代码时经常使用反射,那么编译器将需要频繁地动态生成这些结构体,这会导致编译时间的增加和程序执行速度的降低。
第二个原因是反射使用了接口。在Golang中,所有类型(包括基础类型和结构体)都是通过接口实现的。在反射时,我们需要将类型和值转换为对应的接口类型。这种转换需要额外的时间和空间开销,而且机器码也需要额外的指令来完成类型转换。
在go中会尽量避免使用反射来实现某些功能,当然如果开发性价比不错,用反射也没问题
package mainimport ( "encoding/json" "fmt")type MyStruct struct { First string `json:"first"` Last string `json:"last"` Age int `json:"age"` Nets []string `json:"nets"` Submap Submap `json:"submap"`}type Submap struct { Subfirst string `json:"subfirst"` Sublast []string `json:"sublast"` Subsub Subsub `json:"subsub"`}type Subsub struct { Subsub []string `json:"subsub"`}func main() { jsonData := ` { "first": "Dale", "last": "Murphy", "age": 44, "nets": ["ig", "fb", "value1", "value2"], "submap": { "subfirst": "Dale", "sublast": ["Murphy", "value3", "value4"], "subsub":{"subsub":["value5","value6","value7","value8","value9"]} } }` var data MyStruct err := json.Unmarshal([]byte(jsonData), &data) if err != nil { fmt.Println("Error:", err) return } // Accessing the flattened structure fmt.Println("First:", data.First) fmt.Println("Last:", data.Last) fmt.Println("Age:", data.Age) fmt.Println("Nets:", data.Nets) fmt.Println("Subfirst:", data.Submap.Subfirst) fmt.Println("Sublast:", data.Submap.Sublast) fmt.Println("Subsub:", data.Submap.Subsub.Subsub)}
问题内容: 嗨,我在解组嵌套的JSON数组时遇到问题。我应该创建什么结构?我想避免使用尽可能多的东西,但是我真的不知道在这种情况下是否有可能。 杰森,我想解组: 和我想用来解组的结构: 链接到示例:https : //play.golang.org/p/owuMptNrix 问题答案: 是的,答案只是一小部分: 好感谢你的问题,我发现这个错误的工具,我总是用它的Json操作一起去,它可以为你节省很
问题内容: 我正在尝试将JSON转换为CSV文件,可用于进一步分析。我的结构存在的问题是,当我转换JSON文件时,我有很多嵌套的字典/列表。 我尝试使用pandas ,但它只会使第一级扁平化。 任何想法如何讨好整个JSON文件,以便我可以为单个(在本例中为虚拟机)条目创建到CSV文件的单行输入?我已经尝试过这里发布的几种解决方案,但是我的结果始终只是将第一级展平。 这是示例JSON(在这种情况下,
Go 语言循环语句 Go 语言允许用户在循环内使用循环。接下来我们将为大家介绍嵌套循环的使用。 语法 以下为 Go 语言嵌套循环的格式: for [condition | ( init; condition; increment ) | Range] { for [condition | ( init; condition; increment ) | Range] {
问题内容: 考虑以下代码: 我有一些要求,例如我想读取/获取所有类型的键和值以进行某些处理,但我无法定义它,因为我将获得动态JSON输入(例如,作为字符串,那么第二级循环将给我索引)数组并处理每个具有key 和的JSON 。 我希望遍历其中包含的每个键/值对,浏览地图的最有效方法是什么? 注意:我是Go-lang的新手,也欢迎您提出问题。 问题答案: 请参阅此博客条目,该条目彻底涵盖了该主题,尤其
一个奇怪的问题,大佬们,这个问题我不清楚是怎么发生的,想求问一下是否有大佬知道如何解决
首先我使用了 "github.com/confluentinc/confluent-kafka-go/kafka" 这个包来连接Kafka,之后实现了个连接池的功能,代码如下: 开发完之后,我打算执行交叉编译,编译为Linux下可执行文件,打包脚本如下:(之前使用MQ的时候就没有问题,换成了kafka就报错): 报错如下: 十分不理解,这是什么原因呢?换成kafka之后,不能进行交叉编译么?请各位