当前位置: 首页 > 知识库问答 >
问题:

高学习率使模型训练失败

白志勇
2023-03-14

我只是用TensorFlow训练了一个三层的softmax神经网络。它来自吴恩达的课程,3.11TensorFlow。我修改代码是为了查看每个历元的测试和训练精度。

当我增加学习率时,成本在1.9左右,而准确率保持1.66...7不变。我发现学习率越高,它发生的频率就越高。当learing_rate在0.001左右时,有时会出现这种情况。当learing_rate在0.0001附近时,这种情况不会发生。

我只想知道为什么。

这是一些输出数据:

learing_rate = 1
Cost after epoch 0: 1312.153492
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 100: 1.918554
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 200: 1.897831
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 300: 1.907957
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 400: 1.893983
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 500: 1.920801
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667

learing_rate = 0.01
Cost after epoch 0: 2.906999
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 100: 1.847423
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 200: 1.847042
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 300: 1.847402
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 400: 1.847197
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 500: 1.847694
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667

这是代码:

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
          num_epochs = 1500, minibatch_size = 32, print_cost = True):
    """
    Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.

    Arguments:
    X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
    Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
    X_test -- training set, of shape (input size = 12288, number of training examples = 120)
    Y_test -- test set, of shape (output size = 6, number of test examples = 120)
    learning_rate -- learning rate of the optimization
    num_epochs -- number of epochs of the optimization loop
    minibatch_size -- size of a minibatch
    print_cost -- True to print the cost every 100 epochs

    Returns:
    parameters -- parameters learnt by the model. They can then be used to predict.
    """

    ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
    tf.set_random_seed(1)                             # to keep consistent results
    seed = 3                                          # to keep consistent results
    (n_x, m) = X_train.shape                          # (n_x: input size, m : number of examples in the train set)
    n_y = Y_train.shape[0]                            # n_y : output size
    costs = []                                        # To keep track of the cost

    # Create Placeholders of shape (n_x, n_y)
    ### START CODE HERE ### (1 line)
    X, Y = create_placeholders(n_x, n_y)
    ### END CODE HERE ###

    # Initialize parameters
    ### START CODE HERE ### (1 line)
    parameters = initialize_parameters()
    ### END CODE HERE ###

    # Forward propagation: Build the forward propagation in the tensorflow graph
    ### START CODE HERE ### (1 line)
    Z3 = forward_propagation(X, parameters)
    ### END CODE HERE ###

    # Cost function: Add cost function to tensorflow graph
    ### START CODE HERE ### (1 line)
    cost = compute_cost(Z3, Y)
    ### END CODE HERE ###

    # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
    ### START CODE HERE ### (1 line)
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    ### END CODE HERE ###

    # Initialize all the variables
    init = tf.global_variables_initializer()
    # Calculate the correct predictions
    correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))

    # Calculate accuracy on the test set
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    # Start the session to compute the tensorflow graph
    with tf.Session() as sess:

        # Run the initialization
        sess.run(init)

        # Do the training loop
        for epoch in range(num_epochs):

            epoch_cost = 0.                       # Defines a cost related to an epoch
            num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
            seed = seed + 1
            minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)

            for minibatch in minibatches:

                # Select a minibatch
                (minibatch_X, minibatch_Y) = minibatch

                # IMPORTANT: The line that runs the graph on a minibatch.
                # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
                ### START CODE HERE ### (1 line)
                _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
                ### END CODE HERE ###

                epoch_cost += minibatch_cost / num_minibatches

            # Print the cost every epoch
            if print_cost == True and epoch % 100 == 0:
                print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
                print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
                print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
            if print_cost == True and epoch % 5 == 0:
                costs.append(epoch_cost)

        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

        # lets save the parameters in a variable
        parameters = sess.run(parameters)
        print ("Parameters have been trained!")


        print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
        print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))

        return parameters

parameters = model(X_train, Y_train, X_test, Y_test,learning_rate=0.001)

共有1个答案

薛泰
2023-03-14

阅读其他的答案,我仍然不太满意的几点,特别是因为我觉得这个问题可以(并且已经)很好的可视化,以触及这里提出的论点。

你的问题很可能是由于“类似的东西”在正确的描述。再者,而且这是目前还没有提到的一点,就是最优的学习率(如果甚至有这样的事情的话)很大程度上取决于你具体的问题设置;对于我的问题,一个平滑的收敛可能是学习速率与你的不同。不幸的是,尝试几个值也是有意义的,因为你可以用它来实现一些合理的结果,比如你在你的岗位上做了什么。

此外,我们也可以探讨解决这个问题的可能方法。我喜欢在我的模型中应用的一个妙招是,时不时地降低学习率。在大多数框架中有不同的可用实现:

  • Keras允许您使用名为LearningGratesCheduler的回调函数设置学习速率。
  • PyTorch允许您直接操作学习速率,如下所示:optimizer.param_groups[0]['lr']=new_value
  • TensorFlow具有多种功能,允许您相应地衰减。

简而言之,这个想法是从一个相对较高的学习率开始(我还是倾向于0.01-0.1之间的值开始),然后逐渐降低它们,以确保你最终以一个局部最小值结束。

还要注意,在非凸优化这个主题上有一个完整的研究领域,即如何确保最终得到“可能的最佳”解决方案,而不仅仅是陷入局部最小值。但我认为现在这是不可能的。

 类似资料:
  • 在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱子来处理。如果你实践过前几章的一些示例,你惊奇的发现你可以优化回归系统,改进数字图像的分类器,你甚至可以零基础搭建一个垃圾邮件的分类器,但是你却对它们内部的工作流程一无所知。事实上,许多场合你都不需要知道这些黑箱子的内部有什么,干了什么。 然而,如果你对其内部的工作流程有一定了解的话,当面对一个机器学习任务时候,这些理论可以帮助你快速的找到恰

  • 在之前的描述中,我们通常把机器学习模型和训练算法当作黑箱子来处理。如果你实践过前几章的一些示例,你惊奇的发现你可以优化回归系统,改进数字图像的分类器,你甚至可以零基础搭建一个垃圾邮件的分类器,但是你却对它们内部的工作流程一无所知。事实上,许多场合你都不需要知道这些黑箱子的内部有什么,干了什么。 然而,如果你对其内部的工作流程有一定了解的话,当面对一个机器学习任务时候,这些理论可以帮助你快速的找到恰

  • 传感器默认同时通过 Bluetooth 和 ANT+ 传输您的心率信号。如需要,您可以在 Polar Flow 应用设置中关闭 ANT+ 心率传输。利用 Polar Flow 应用,您还可以打开双 Bluetooth 设置,然后将传感器同时与两个设备(例如,与兼容的健身设备和 Polar 手表)配合使用,您可以在两个设备中查看您的实时心率。 在开始之前,确保 Verity Sense 已与您的 P

  • 我似乎无法理解学习率的价值。我得到的是下面。 我已经尝试了200个epoch的模型,并希望查看/更改学习速率。这不是正确的方法吗?

  • 尝试一周,能改变一些旧习 一个一个练,反复的使用即可 不求多,以下练熟悉即可 practice makes prefect~ 放弃鼠标 全键盘和触摸板,你可以么? 从熟悉快捷键开始 全屏 专心写代码,减少干扰 ctrl + command + f 放大到全屏 设置Workbench主菜单快捷键,快速切换 设置Workbench主菜单快捷键,然后就有了command + 1到4的快捷键,快速切换,效

  • 大家已经提到了这个,这个,这个和这个,但是仍然发现很难建立一个自定义的名字查找器模型。。以下是代码: 我在尝试执行命令行时不断出现错误: 让我把论点1改为 然后我收到一个运行时错误,说你不能强制转换这个。这是我在线程“main”中强制转换 第二个问题是: 给出一个语法错误。不确定这里出了什么问题。如果有任何帮助,我将不胜感激,因为我已经尝试了上述链接上的所有代码片段。 祝好