我将介绍Tarjan的算法,用于使用DFS在图中找到连接点。
low[] : It is an array of N elements which stores the discovery time of every vertex. It is initialized by 0.
disc[]: It is an array of N elements which stores, for every vertex v, the discovery time of the earliest discovered vertex to which v or any of the vertices in the subtree rooted at v is having a back edge. It is initialized by INFINITY.
from collections import defaultdict
#This class represents an undirected graph
#using adjacency list representation
class Graph:
def __init__(self,vertices):
self.V= vertices #No. of vertices
self.graph = defaultdict(list) # default dictionary to store graph
self.Time = 0
# function to add an edge to graph
def addEdge(self,u,v):
self.graph[u].append(v)
self.graph[v].append(u)
'''A recursive function that find articulation points
using DFS traversal
u --> The vertex to be visited next
visited[] --> keeps tract of visited vertices
disc[] --> Stores discovery times of visited vertices
parent[] --> Stores parent vertices in DFS tree
ap[] --> Store articulation points'''
def APUtil(self,u, visited, ap, parent, low, disc):
#Count of children in current node
children =0
# Mark the current node as visited and print it
visited[u]= True
# Initialize discovery time and low value
disc[u] = self.Time
low[u] = self.Time
self.Time += 1
#Recur for all the vertices adjacent to this vertex
for v in self.graph[u]:
# If v is not visited yet, then make it a child of u
# in DFS tree and recur for it
if visited[v] == False :
parent[v] = u
children += 1
self.APUtil(v, visited, ap, parent, low, disc)
# Check if the subtree rooted with v has a connection to
# one of the ancestors of u
low[u] = min(low[u], low[v])
# u is an articulation point in following cases
# (1) u is root of DFS tree and has two or more chilren.
if parent[u] == -1 and children > 1:
ap[u] = True
#(2) If u is not root and low value of one of its child is more
# than discovery value of u.
if parent[u] != -1 and low[v] >= disc[u]:
ap[u] = True
# Update low value of u for parent function calls
elif v != parent[u]:
low[u] = min(low[u], disc[v])
#The function to do DFS traversal. It uses recursive APUtil()
def AP(self):
# Mark all the vertices as not visited
# and Initialize parent and visited,
# and ap(articulation point) arrays
visited = [False] * (self.V)
disc = [float("Inf")] * (self.V)
low = [float("Inf")] * (self.V)
parent = [-1] * (self.V)
ap = [False] * (self.V) #To store articulation points
# Call the recursive helper function
# to find articulation points
# in DFS tree rooted with vertex 'i'
for i in range(self.V):
if visited[i] == False:
self.APUtil(i, visited, ap, parent, low, disc)
for index, value in enumerate (ap):
if value == True: print index,
# Create a graph given in the above diagram
g1 = Graph(5)
g1.addEdge(1, 0)
g1.addEdge(0, 2)
g1.addEdge(2, 1)
g1.addEdge(0, 3)
g1.addEdge(3, 4)
print "\nArticulation points in first graph "
g1.AP()
g2 = Graph(4)
g2.addEdge(0, 1)
g2.addEdge(1, 2)
g2.addEdge(2, 3)
print "\nArticulation points in second graph "
g2.AP()
g3 = Graph (7)
g3.addEdge(0, 1)
g3.addEdge(1, 2)
g3.addEdge(2, 0)
g3.addEdge(1, 3)
g3.addEdge(1, 4)
g3.addEdge(1, 6)
g3.addEdge(3, 5)
g3.addEdge(4, 5)
print "\nArticulation points in third graph "
g3.AP()
#This code is contributed by Neelam Yadav
low[u] = min(low[u], low[v])
好的。现在是基本条件?
elif v != parent[u]:
low[u] = min(low[u], disc[v])
这也很容易理解:如果连接到u的顶点v已经被访问过(检查与此elif对应的If条件)“不知何故”,并且v不是u的父级,那么更新low[u]以包括disc[v]。
现在我的问题是:
在有向图中有四种边:树边、后边、前边和交叉边,这是正确的。维基百科有简短的定义和一个解释图。然而,在无向图中,只有树和后边。这是为什么?
TBD 参考 The Birth of an Edge Orchestrator – Cloudify Meets Edge Computing K8s(Kubernetes) and SDN for Multi-access Edge Computing deployment
共识算法 实际上,要保障系统满足不同程度的一致性,往往需要通过共识算法来达成。 共识算法解决的是对某个提案(Proposal),大家达成一致意见的过程。提案的含义在分布式系统中十分宽泛,如多个事件发生的顺序、某个键对应的值、谁是领导……等等,可以认为任何需要达成一致的信息都是一个提案。 注:实践中,一致性的结果往往还需要客户端的特殊支持,典型地通过访问足够多个服务节点来验证确保获取共识后结果。 问
POW+DPOS: 混合共识,POW挖矿,DPOS监督。 POW:通过算力生成区块。抵押少量的币,拥有挖矿的权利(避免矿工恶意生成非法区块,恶意矿工将被扣除押金)。 DPOS:通过选票推选出监督节点。监督节点可以微调系统参数(区块大小、区块生成速度),可以举报恶意区块。监督节点有区块奖励(70%返利给投票者)。 所有拥有虚拟币的人,都可以投票,投票后,将可以获得返利。 区块的生成时间是固定的,默认
本文向大家介绍python中K-means算法基础知识点,包括了python中K-means算法基础知识点的使用技巧和注意事项,需要的朋友参考一下 能够学习和掌握编程,最好的学习方式,就是去掌握基本的使用技巧,再多的概念意义,总归都是为了使用服务的,K-means算法又叫K-均值算法,是非监督学习中的聚类算法。主要有三个元素,其中N是元素个数,x表示元素,c(j)表示第j簇的质心,下面就使用方式给
前言 为了配置kubernetes中的traefik ingress的高可用,对于kubernetes集群以外只暴露一个访问入口,需要使用keepalived排除单点问题。本文参考了kube-keepalived-vip,但并没有使用容器方式安装,而是直接在node节点上安装。 定义 首先解释下什么叫边缘节点(Edge Node),所谓的边缘节点即集群内部用来向集群外暴露服务能力的节点,集群外部的
我试图通过串行通信协议与设备通信,但在查找消息的最后2个字节使用的校验和/CRC算法时遇到了一些困难。我在各种在线crc实用程序中尝试了几种CRC16算法,比如:http://www.sunshine2k.de/coding/javascript/crc/crc_js.html http://www.zorc.breitbandkatze.de/crc.html 我也尝试了逆向工程,在REVENG