能够学习和掌握编程,最好的学习方式,就是去掌握基本的使用技巧,再多的概念意义,总归都是为了使用服务的,K-means算法又叫K-均值算法,是非监督学习中的聚类算法。主要有三个元素,其中N是元素个数,x表示元素,c(j)表示第j簇的质心,下面就使用方式给大家简单介绍实例使用。
K-Means算法进行聚类分析
km = KMeans(n_clusters = 3) km.fit(X) centers = km.cluster_centers_ print(centers)
三个簇的中心点坐标为:
[[5.006 3.428 ]
[6.81276596 3.07446809]
[5.77358491 2.69245283]]
比较一下K-Means聚类结果和实际样本之间的差别:
predicted_labels = km.labels_ fig, axes = plt.subplots(1, 2, figsize=(16,8)) axes[0].scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k', s=150) axes[1].scatter(X[:, 0], X[:, 1], c=predicted_labels, cmap=plt.cm.Set1, edgecolor='k', s=150) axes[0].set_xlabel('Sepal length', fontsize=16) axes[0].set_ylabel('Sepal width', fontsize=16) axes[1].set_xlabel('Sepal length', fontsize=16) axes[1].set_ylabel('Sepal width', fontsize=16) axes[0].tick_params(direction='in', length=10, width=5, colors='k', labelsize=20) axes[1].tick_params(direction='in', length=10, width=5, colors='k', labelsize=20) axes[0].set_title('Actual', fontsize=18) axes[1].set_title('Predicted', fontsize=18)
k-means算法实例扩展内容:
# -*- coding: utf-8 -*- """Excercise 9.4""" import numpy as np import pandas as pd import matplotlib.pyplot as plt import sys import random data = pd.read_csv(filepath_or_buffer = '../dataset/watermelon4.0.csv', sep = ',')[["密度","含糖率"]].values ########################################## K-means ####################################### k = int(sys.argv[1]) #Randomly choose k samples from data as mean vectors mean_vectors = random.sample(data,k) def dist(p1,p2): return np.sqrt(sum((p1-p2)*(p1-p2))) while True: print mean_vectors clusters = map ((lambda x:[x]), mean_vectors) for sample in data: distances = map((lambda m: dist(sample,m)), mean_vectors) min_index = distances.index(min(distances)) clusters[min_index].append(sample) new_mean_vectors = [] for c,v in zip(clusters,mean_vectors): new_mean_vector = sum(c)/len(c) #If the difference betweenthe new mean vector and the old mean vector is less than 0.0001 #then do not updata the mean vector if all(np.divide((new_mean_vector-v),v) < np.array([0.0001,0.0001]) ): new_mean_vectors.append(v) else: new_mean_vectors.append(new_mean_vector) if np.array_equal(mean_vectors,new_mean_vectors): break else: mean_vectors = new_mean_vectors #Show the clustering result total_colors = ['r','y','g','b','c','m','k'] colors = random.sample(total_colors,k) for cluster,color in zip(clusters,colors): density = map(lambda arr:arr[0],cluster) sugar_content = map(lambda arr:arr[1],cluster) plt.scatter(density,sugar_content,c = color) plt.show()
到此这篇关于python中K-means算法基础知识点的文章就介绍到这了,更多相关python中K-means算法是什么内容请搜索小牛知识库以前的文章或继续浏览下面的相关文章希望大家以后多多支持小牛知识库!
本文向大家介绍python实现k-means聚类算法,包括了python实现k-means聚类算法的使用技巧和注意事项,需要的朋友参考一下 k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离 3)重
本文向大家介绍k-means算法流程相关面试题,主要包含被问及k-means算法流程时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 从数据集中随机选择k个聚类样本作为初始的聚类中心,然后计算数据集中每个样本到这k个聚类中心的距离,并将此样本分到距离最小的聚类中心所对应的类中。将所有样本归类后,对于每个类别重新计算每个类别的聚类中心即每个类中所有样本的质心,重复以上操作直到聚类中心不变为止。
本文会介绍一般的k-means算法、k-means++算法以及基于k-means++算法的k-means||算法。在spark ml,已经实现了k-means算法以及k-means||算法。 本文首先会介绍这三个算法的原理,然后在了解原理的基础上分析spark中的实现代码。 1 k-means算法原理分析 k-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据它们的属性分为k
本文向大家介绍Python基础知识点 初识Python.md,包括了Python基础知识点 初识Python.md的使用技巧和注意事项,需要的朋友参考一下 Python简介 Python的历史 1989年圣诞节:Guido von Rossum开始写Python语言的编译器。 1991年2月:第一个Python编译器(同时也是解释器)诞生,它是用C语言实现的(后面又出现了Java和C#实现的版本J
【python】面试基础知识点整理 1、解释型和编译型语言的区别 2、数据类型的常用方法 3、简述 Python 中的字符串编码 4、打印九九乘法表 5、面向对象中__new__ 和 __init__ 区别 6、实现二分法查找函数 7、字符串格式化方式 8、实现一个简单的 API 9、实现一个斐波那契数列 10、冒泡排序 11、快速排序 python基础测试100题 1、解释型和编译型语言的区别
基础知识 基于 ruby 写的 官网文档:https://www.elastic.co/guide/en/logstash/5.2/first-event.html 如果是通过网络来收集,并不需要所有机子都装,但是如果是要通过读取文件来收集,那文件所在的那个机子就的安装 配置文件的写法格式:https://www.elastic.co/guide/en/logstash/5.2/configura