当前位置: 首页 > 知识库问答 >
问题:

如何将spark结构化流数据重置为上次可用偏移量

施超
2023-03-14

我正在用Kafka运行一个结构化流应用程序。我发现如果系统因为某种原因停机几天...检查点变得过时,并且在Kafka中找不到与该检查点相对应的偏移量。我如何让Spark结构化流应用程序选择最后一个可用的偏移量,并从那里开始。我尝试将偏移量重置设置为“早期/最新”,但系统崩溃,出现以下错误:

org.apache.kafka.clients.consumer.OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions: {MyTopic-574=6559828}
at org.apache.kafka.clients.consumer.internals.Fetcher.parseCompletedFetch(Fetcher.java:970)
at org.apache.kafka.clients.consumer.internals.Fetcher.fetchedRecords(Fetcher.java:490)
at org.apache.kafka.clients.consumer.KafkaConsumer.pollForFetches(KafkaConsumer.java:1259)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1187)
at org.apache.kafka.clients.consumer.KafkaConsumer.poll(KafkaConsumer.java:1115)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.fetchData(KafkaDataConsumer.scala:470)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.org$apache$spark$sql$kafka010$InternalKafkaConsumer$$fetchRecord(KafkaDataConsumer.scala:361)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer$$anonfun$get$1.apply(KafkaDataConsumer.scala:251)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer$$anonfun$get$1.apply(KafkaDataConsumer.scala:234)
at org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.runUninterruptiblyIfPossible(KafkaDataConsumer.scala:209)
at org.apache.spark.sql.kafka010.InternalKafkaConsumer.get(KafkaDataConsumer.scala:234)
at org.apache.spark.sql.kafka010.KafkaDataConsumer$class.get(KafkaDataConsumer.scala:64)
at org.apache.spark.sql.kafka010.KafkaDataConsumer$CachedKafkaDataConsumer.get(KafkaDataConsumer.scala:500)
at org.apache.spark.sql.kafka010.KafkaMicroBatchInputPartitionReader.next(KafkaMicroBatchReader.scala:357)
at org.apache.spark.sql.execution.datasources.v2.DataSourceRDD$$anon$1.hasNext(DataSourceRDD.scala:49)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage2.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216)
at org.apache.spark.sql.execution.SortExec$$anonfun$1.apply(SortExec.scala:108)
at org.apache.spark.sql.execution.SortExec$$anonfun$1.apply(SortExec.scala:101)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:836)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:123)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

共有1个答案

商正浩
2023-03-14

如果系统停机数天,那么这意味着一些日志可能已经被压缩。更确切地说,您的应用程序尝试从主题MyTopic中的第574个分区读取偏移量6559828

为了找到每个分区最早的可用偏移量,您可以简单地运行以下命令:

bin/kafka-run-class.sh kafka.tools.GetOffsetShell \
    --broker-list localhost:9092 \
    --topic MyTopic \
    --time -2
 类似资料:
  • 我正在研究为Spark结构化流在kafka中存储kafka偏移量,就像它为DStreams工作一样,除了结构化流,我也在研究同样的情况。是否支持结构化流?如果是,我如何实现? 我知道使用进行hdfs检查点,但我对内置的偏移量管理感兴趣。 我期待Kafka存储偏移量只在内部没有火花hdfs检查点。

  • 背景:我写了一个简单的spark结构化蒸app,把数据从Kafka搬到S3。我发现,为了支持一次准确的保证,spark创建了_spark_metadata文件夹,但该文件夹最终变得太大,当流应用程序运行很长时间时,元数据文件夹变得太大,以至于我们开始出现OOM错误。我想摆脱Spark结构化流的元数据和检查点文件夹,自己管理偏移量。 我们如何管理Spark Streaming中的偏移量:我使用了va

  • 我正在使用Spark 2.2上的Spark结构化流媒体将文件从HDFS目录流式传输到Kafka主题。我想为我写的主题数据捕捉Kafka偏移量。 我正在使用 给Kafka写信。 当我利用 为了捕获流的进度信息,检索到的信息与Kafka中创建的偏移量不相关。 我假设这是因为流提供的信息实际上是关于我正在使用的文件流的,而与Kafka中编写的内容无关。 有没有一种Spark Structure流式处理方

  • Spark(v2.4)程序功能: 在spark中以结构化流模式从Kafka队列读取JSON数据 按原样在控制台上打印读取的数据 问题获取: -获取

  • 在过去的几个月里,我已经使用了相当多的结构化流来实现流作业(在大量使用Kafka之后)。在阅读了《Stream Processing with Apache Spark》一书之后,我有这样一个问题:有没有什么观点或用例可以让我使用Spark Streaming而不是Structured Streaming?如果我投入一些时间来研究它,或者由于im已经使用了Spark结构化流,我应该坚持使用它,而之

  • 我正在使用spark structured streaming(2.2.1)来消费来自Kafka(0.10)的主题。 我的检查点位置设置在外部HDFS目录上。在某些情况下,我希望重新启动流式应用程序,从一开始就消费数据。然而,即使我从HDFS目录中删除所有检查点数据并重新提交jar,Spark仍然能够找到我上次使用的偏移量并从那里恢复。偏移量还在哪里?我怀疑与Kafka消费者ID有关。但是,我无法