我使用spark 2.2.1,kafka_2.12-1.0.0和scala从kafka获取一些json数据,但是,我只连接了kafka,没有数据输出。
这里是我的scala代码:
def main(args: Array[String]) {
val spark = SparkSession
.builder()
.appName("Spark structured streaming Kafka example")
.master("local[2]")
.getOrCreate()
val inputstream = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "behavior")
.option("group.id","test-consumer-group")
.option("startingOffsets", "earliest")
.load()
import spark.implicits._
println("===============================================================")
val query = inputstream //select($"data")
.selectExpr("CAST(key AS STRING)","CAST(value AS STRING)")
.writeStream
.outputMode("append")
.format("console")
.trigger( Trigger.ProcessingTime("2 seconds"))
.start()
println("===============================================================" +query.isActive)
query.awaitTermination()
这是我的绒球.xml
<properties>
<spark.version>2.2.0</spark.version>
<scala.version>2.11.6</scala.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.12</artifactId>
<version>0.10.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql-kafka-0-10_2.11</artifactId>
<version>2.2.1</version>
</dependency>
</dependencies>
我运行这段代码,控制台没有显示任何来自kafka的数据。
这里是控制台输出:
===============================================================
18/03/12 17:00:47 INFO SparkSqlParser: Parsing command: CAST(key AS STRING)
18/03/12 17:00:47 INFO SparkSqlParser: Parsing command: CAST(value AS STRING)
18/03/12 17:00:48 INFO StreamExecution: Starting [id = 6648f18e-3ecd-4046-85ee-932fffaab70c, runId = cb6a9ae9-9460-4232-b8ed-342d48c2e524]. Use /D:/data/kafka to store the query checkpoint.
===============================================================true
18/03/12 17:00:48 INFO ConsumerConfig: ConsumerConfig values:
auto.commit.interval.ms = 5000
auto.offset.reset = earliest
bootstrap.servers = [localhost:9092]
check.crcs = true
client.id =
connections.max.idle.ms = 540000
enable.auto.commit = false
exclude.internal.topics = true
fetch.max.bytes = 52428800
fetch.max.wait.ms = 500
fetch.min.bytes = 1
group.id = spark-kafka-source-1b918ced-93c2-4648-8a60-16f9695d12d6-2063137397-driver-0
heartbeat.interval.ms = 3000
interceptor.classes = null
key.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
max.partition.fetch.bytes = 1048576
max.poll.interval.ms = 300000
max.poll.records = 1
metadata.max.age.ms = 300000
metric.reporters = []
metrics.num.samples = 2
metrics.recording.level = INFO
metrics.sample.window.ms = 30000
partition.assignment.strategy = [class org.apache.kafka.clients.consumer.RangeAssignor]
receive.buffer.bytes = 65536
reconnect.backoff.ms = 50
request.timeout.ms = 305000
retry.backoff.ms = 100
sasl.jaas.config = null
sasl.kerberos.kinit.cmd = /usr/bin/kinit
sasl.kerberos.min.time.before.relogin = 60000
sasl.kerberos.service.name = null
sasl.kerberos.ticket.renew.jitter = 0.05
sasl.kerberos.ticket.renew.window.factor = 0.8
sasl.mechanism = GSSAPI
security.protocol = PLAINTEXT
send.buffer.bytes = 131072
session.timeout.ms = 10000
ssl.cipher.suites = null
ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
ssl.endpoint.identification.algorithm = null
ssl.key.password = null
ssl.keymanager.algorithm = SunX509
ssl.keystore.location = null
ssl.keystore.password = null
ssl.keystore.type = JKS
ssl.protocol = TLS
ssl.provider = null
ssl.secure.random.implementation = null
ssl.trustmanager.algorithm = PKIX
ssl.truststore.location = null
ssl.truststore.password = null
ssl.truststore.type = JKS
value.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
Discovered coordinator KB2CMVMCIWDJT61.localdomain:9092 (id: 2147483647 rack: null) for group spark-kafka-source-1b918ced-93c2-4648-8a60-16f9695d12d6-2063137397-driver-0.
Marking the coordinator KB2CMVMCIWDJT61.localdomain:9092 (id: 2147483647 rack: null) dead for group spark-kafka-source-1b918ced-93c2-4648-8a60-16f9695d12d6-2063137397-driver-0
输出只是说我的消费者群体已经死亡。我的kafka运行良好,我可以使用控制台命令从“行为”主题中获取数据。总之,Kafka和话题似乎没有错。我是Spark结构化流和Kafka的新手,希望得到大家的帮助。
问题出在Kafka端。尝试重新启动动物园管理员。协调器死错误是反复出现还是只出现一次?
如果它只出现一次,那么就会出现连接问题,并且您的火花无法连接到Kafka。查看Kafka和动物园管理员是否在您的localhost上正确设置。如果它反复出现,则表示它正在连接,但还有其他问题,在这种情况下,请尝试重新启动zoomaster。
您不应该使用结构化流来设置 group.id。在Kafka特定配置下:
group.id:Kafka 源将自动为每个查询创建唯一的组 ID。
https://spark.apache.org/docs/2.2.0/structured-streaming-kafka-integration.html
我试过了 在我自己的电脑里,一切都很好。但是我在我学校的服务器上试过之后,它有以下的消息和错误。我在谷歌搜索了很久,完全不知道。有人能帮我吗? Ivy默认缓存设置为:/home/zqwang/.ivy2/jars::loading settings::url=jar:file:/data/opt/tmp/zqwang/spark-2.3.1-bin-hadoop2.7/jars/ivy-2.4.0
在过去的几个月里,我已经使用了相当多的结构化流来实现流作业(在大量使用Kafka之后)。在阅读了《Stream Processing with Apache Spark》一书之后,我有这样一个问题:有没有什么观点或用例可以让我使用Spark Streaming而不是Structured Streaming?如果我投入一些时间来研究它,或者由于im已经使用了Spark结构化流,我应该坚持使用它,而之
我正在研究为Spark结构化流在kafka中存储kafka偏移量,就像它为DStreams工作一样,除了结构化流,我也在研究同样的情况。是否支持结构化流?如果是,我如何实现? 我知道使用进行hdfs检查点,但我对内置的偏移量管理感兴趣。 我期待Kafka存储偏移量只在内部没有火花hdfs检查点。
我正在使用Spark结构化流媒体阅读Kafka主题。 我错过什么了吗?
批处理查询中似乎不支持“最新”。我想知道是否有可能用另一种方法做类似的事情(不直接处理偏移)
我是Kafka流媒体的新手。我使用python设置了一个twitter监听器,它运行在localhost:9092kafka服务器中。我可以使用kafka客户端工具(conduktor)并使用命令“bin/kafka-console-consumer.sh--bootstrap-server localhost:9092-topic twitter--from-begind”来使用侦听器生成的流,