"405-048011-62815", "CRC Industries",
"630-0746","Dixon value",
"4444-444","3M INdustries",
"555-55","Dixon coupling valve"
输入数据集2
"222-2222-5555", "Tata",
"7777-88886","WestSide",
"22222-22224","Reliance",
"33333-3333","V industries"
预期输出为
----------label1----|------sentence1------|------label2---|------sentence2-----------
| 405-048011-62815 | CRC Industries | 222-2222-5555 | Tata|
| 630-0746 | Dixon value | 7777-88886 | WestSide|
-------------------------------------------------------------------------------------
`
List<Row> data = Arrays.asList(
RowFactory.create("405-048011-62815", "CRC Industries"),
RowFactory.create("630-0746","Dixon value"),
RowFactory.create("4444-444","3M INdustries"),
RowFactory.create("555-55","Dixon coupling valve"));
StructType schema = new StructType(new StructField[] {new StructField("label1", DataTypes.StringType, false,Metadata.empty()),
new StructField("sentence1", DataTypes.StringType, false,Metadata.empty()) });
Dataset<Row> sentenceDataFrame = spark.createDataFrame(data, schema);
List<String> listStrings = new ArrayList<String>();
listStrings.add("405-048011-62815");
listStrings.add("630-0746");
Dataset<Row> matchFound1=sentenceDataFrame.filter(col("label1").isin(listStrings.stream().toArray(String[]::new)));
matchFound1.show();
listStrings.clear();
listStrings.add("222-2222-5555");
listStrings.add("7777-88886");
List<Row> data2 = Arrays.asList(
RowFactory.create("222-2222-5555", "Tata"),
RowFactory.create("7777-88886","WestSide"),
RowFactory.create("22222-22224","Reliance"),
RowFactory.create("33333-3333","V industries"));
StructType schema2 = new StructType(new StructField[] {new StructField("label2", DataTypes.StringType, false,Metadata.empty()),
new StructField("sentence2", DataTypes.StringType, false,Metadata.empty()) });
Dataset<Row> sentenceDataFrame2 = spark.createDataFrame(data2, schema2);
Dataset<Row> matchFound2=sentenceDataFrame2.filter(col("label2").isin(listStrings.stream().toArray(String[]::new)));
matchFound2.show();
//Approach 1
Dataset<Row> matchFound3=matchFound1.select(matchFound1.col("label1"),matchFound1.col("sentence1"),matchFound2.col("label2"),
matchFound2.col("sentence2"));
System.out.println("After concat");
matchFound3.show();
//Approach 2
Dataset<Row> matchFound4=matchFound1.filter(concat((col("label1")),matchFound1.col("sentence1"),matchFound2.col("label2"),
matchFound2.col("sentence2")));
System.out.println("After concat 2");
matchFound4.show();`
----------
org.apache.spark.sql.AnalysisException: resolved attribute(s) label2#10,sentence2#11 missing from label1#0,sentence1#1 in operator !Project [label1#0, sentence1#1, label2#10, sentence2#11];;
!Project [label1#0, sentence1#1, label2#10, sentence2#11]
+- Filter label1#0 IN (405-048011-62815,630-0746)
+- LocalRelation [label1#0, sentence1#1]
----------
Error for each of the approaches are as follows
Approach 2 error
org.apache.spark.sql.AnalysisException: filter expression 'concat(`label1`, `sentence1`, `label2`, `sentence2`)' of type string is not a boolean.;;
!Filter concat(label1#0, sentence1#1, label2#10, sentence2#11)
+- Filter label1#0 IN (405-048011-62815,630-0746)
+- LocalRelation [label1#0, sentence1#1]
希望这对你有用
DF
val pre: Array[String] = Array("CRC Industries", "Dixon value" ,"3M INdustries" ,"Dixon coupling valve")
val rea: Array[String] = Array("405048011-62815", "630-0746", "4444-444", "555-55")
val df1 = sc.parallelize( rea zip pre).toDF("label1","sentence1")
val preasons2: Array[String] = Array("Tata", "WestSide","Reliance", "V industries")
val reasonsI2: Array[String] = Array( "222-2222-5555", "7777-88886", "22222-22224", "33333-3333")
val df2 = sc.parallelize( reasonsI2 zip preasons2 ).toDF("label2","sentence2")
字符串索引器
val indexer = new StringIndexer()
.setInputCol("label1")
.setOutputCol("label1Index")
val indexed = indexer.fit(df1).transform(df1)
indexed.show()
val indexer1 = new StringIndexer()
.setInputCol("label2")
.setOutputCol("label2Index")
val indexed1 = indexer1.fit(df2).transform(df2)
indexed1.show()
val rnd_reslt12 = indexed.join(indexed1 , indexed.col("label1Index")===indexed1.col("label2Index")).drop(indexed.col("label1Index")).drop(indexed1.col("label2Index"))
rnd_reslt12.show()
+---------------+--------------------+-------------+------------+
| label1| sentence1| label2| sentence2|
+---------------+--------------------+-------------+------------+
| 630-0746| Dixon value|222-2222-5555| Tata|
| 4444-444| 3M INdustries| 22222-22224| Reliance|
| 555-55|Dixon coupling valve| 33333-3333|V industries|
|405048011-62815| CRC Industries| 7777-88886| WestSide|
+---------------+--------------------+-------------+------------+
问题内容: 我可以在其他具有相同列名的数据框的右边追加一个数据框吗 问题答案: 您可以像这样连接两个数据框。 如果您正在寻找联盟,则可以执行以下操作。 Spark 2.0,已重命名为
问题内容: 我肯定在这里错过了一些简单的事情。尝试在熊猫中合并具有相同列名的两个数据框,但右侧的数据框具有一些左侧没有的列,反之亦然。 我试着加入外部联接: 但这产生了: 我还指定了一个要连接的单列(例如on =“ id”),但是它复制了除“ id”以外的所有列,例如attr_1_x,attr_1_y,这并不理想。我也将整个列列表(有很多)传递给了“ on”: 产生: 我想念什么?我想获得一个带有
我有两个熊猫数据帧共享一个共同的列名。我想合并公共列名,但保留与第二个dataFrame中的所有不同列,其中公共列名称匹配。下面是两个数据帧的示例: 我希望预期的结果是: 也就是说,当列“A”匹配时,我希望保留I,J,K,L的行,并且不等于“NaN ”,对于DF1中的列也是如此。 我已经尝试了所有的pd.merge选项,但是它们似乎没有做我上面要求的事情。例如, 在“A”上匹配并将所有键保留在左侧
问题内容: 我有两个表(表A和表B)。 它们具有不同的列数-假设表A具有更多列。 如何合并这两个表,并为表B没有的列获取空值? 问题答案: 为具有较少列的表添加额外的列作为null
我肯定错过了一些简单的东西。尝试合并熊猫中的两个数据帧,它们的列名基本相同,但右边的数据帧有一些左边没有的列,反之亦然。 我已尝试使用外部联接进行联接: 但这会产生: 我还指定了一个要连接的列(例如,on="id"),但这会重复所有列,除了"id",如attr_1_x、attr_1_y,这并不理想。我还传递了整个列列表(有很多)到on: 其产生: 我错过了什么?我想得到一个附加了所有行的df,并且
我有两个数据。表X和表Y。 列 X: Y 中的值列: 创建两个data.tables: 我设置了 X 和 Y 的键: 现在,我尝试通过X中的< code>id和Y中的< code>ID来连接X和Y: All引发错误,指出参数中的列名无效。 我查阅了data.table的手册,发现< code>merge函数不支持< code>by.x和< code>by.y参数。 如何在不更改列名的情况下通过不同