当前位置: 首页 > 知识库问答 >
问题:

我们如何对二叉搜索树进行操作

司徒兴德
2023-03-14

--更新二--

public void balanceBST(TreeNode <E> node) {
    if (node == null)
        System.out.println("There is no tree to balance");

    java.util.ArrayList<E> bstToArray = new java.util.ArrayList<E>();

    Iterator<E> treeToArray = iterator();
    while(treeToArray.hasNext()){
        bstToArray.add(treeToArray.next());
    }
    int low = 0;
    int high = bstToArray.size();
    clear();
    balanceHelper(bstToArray, low, high);

}
/** Helper method for the balanceBST method*/
public void balanceHelper(java.util.ArrayList<E> b, int low, int high) {
    if(low == high)
        return;

    int midpoint = (low+high)/2;
    insert(b.get(midpoint));
    balanceHelper(b, midpoint+1, high);
    balanceHelper(b, low, midpoint);
}
/** Balance BST */
    public void balanceBST(TreeNode <E> node) {
        if (node == null)
            System.out.println("There is no tree to balance");

        java.util.ArrayList<E> bstToArray = new java.util.ArrayList<E>();
        Iterator<E> treeToArray = iterator();
        while(treeToArray.hasNext()){
            bstToArray.add(treeToArray.next());
        }
        //System.out.println(bstToArray);
        int low = 0;
        int high = bstToArray.size();

        balanceHelper(bstToArray, low, high);
        //System.out.println(bstToArray);
    }

    public void balanceHelper(java.util.ArrayList<E> b, int low, int high) {
        if(low == high)
            return;

        int midpoint = (low+high)/2;
        insert(b.get(midpoint));

        balanceHelper(b, midpoint+1, high);
        balanceHelper(b, low, midpoint);
    }

所以我写了这些方法,但我对不同的对象以及如何在驱动程序/测试程序中调用这些方法有点迷惑。以下是我的问题(请原谅,因为它们对一些人来说可能很琐碎):-

(1)为什么我们传递一个节点而不是树给这些方法?

(2)当我在驱动程序中创建树并试图调用treeHeight方法时,我得到一条错误消息,它告诉我传递了错误的参数(tree而不是node).....我知道这个错误,并理解为什么会有这个错误,但我有点困惑,因为我在网上看到的大多数示例都将节点传递给treeHeight方法,通过在BST中插入元素,我们确实有节点,但我们如何调用这样的方法?这是我对OOP缺乏理解。

下面是我测试程序代码的一个片段:

BST<Integer> b1 = new BST<Integer>();
b1.insert(1);
b1.insert(2);
b1.insert(3);
b1.insert(4);
// How do I call the treeHeight on BST?
// I tried b1.treeHeight() but....
// and I tried treeHeight(BST) but....
// am a bit lost

这是BST类和我的方法(请注意,有些方法可能不正确,我仍在研究它们...我确信一旦我把基本原理弄清楚,我会把它们弄明白的):

import java.lang.Math;

public class BST<E extends Comparable<E>> {

    protected TreeNode<E> root;
    protected int size = 0;

    /** Create a default binary tree */
    public BST() {
    }

    /** Create a binary tree from an array of objects */
    public BST(E[] objects) {
        for (int i = 0; i < objects.length; i++)
            insert(objects[i]);
    }

    /** Returns true if the element is in the tree */
    public boolean search(E e) {
        TreeNode<E> current = root; // Start from the root

        while (current != null) {
            if (e.compareTo(current.element) < 0) {
                current = current.left;
            } else if (e.compareTo(current.element) > 0) {
                current = current.right;
            } else
                // element matches current.element
                return true; // Element is found
        }

        return false;
    }

    /**
     * Insert element o into the binary tree Return true if the element is
     * inserted successfully
     */
    public boolean insert(E e) {
        if (root == null)
            root = createNewNode(e); // Create a new root
        else {
            // Locate the parent node
            TreeNode<E> parent = null;
            TreeNode<E> current = root;
            while (current != null)
                if (e.compareTo(current.element) < 0) {
                    parent = current;
                    current = current.left;
                } else if (e.compareTo(current.element) > 0) {
                    parent = current;
                    current = current.right;
                } else
                    return false; // Duplicate node not inserted

            // Create the new node and attach it to the parent node
            if (e.compareTo(parent.element) < 0)
                parent.left = createNewNode(e);
            else
                parent.right = createNewNode(e);
        }

        size++;
        return true; // Element inserted
    }

    protected TreeNode<E> createNewNode(E e) {
        return new TreeNode<E>(e);
    }

    /** Inorder traversal from the root */
    public void inorder() {
        inorder(root);
    }

    /** Inorder traversal from a subtree */
    protected void inorder(TreeNode<E> root) {
        if (root == null)
            return;
        inorder(root.left);
        System.out.print(root.element + " ");
        inorder(root.right);
    }

    /** Postorder traversal from the root */
    public void postorder() {
        postorder(root);
    }

    /** Postorder traversal from a subtree */
    protected void postorder(TreeNode<E> root) {
        if (root == null)
            return;
        postorder(root.left);
        postorder(root.right);
        System.out.print(root.element + " ");
    }

    /** Preorder traversal from the root */
    public void preorder() {
        preorder(root);
    }

    /** Preorder traversal from a subtree */
    protected void preorder(TreeNode<E> root) {
        if (root == null)
            return;
        System.out.print(root.element + " ");
        preorder(root.left);
        preorder(root.right);
    }

    /**
     * This inner class is static, because it does not access any instance
     * members defined in its outer class
     */
    public static class TreeNode<E extends Comparable<E>> {
        protected E element;
        protected TreeNode<E> left;
        protected TreeNode<E> right;

        public TreeNode(E e) {
            element = e;
        }
    }

    /** Get the number of nodes in the tree */
    public int getSize() {
        return size;
    }

    /** Returns the root of the tree */
    public TreeNode<E> getRoot() {
        return root;
    }

    /** Return tree height - my own method */
    public int treeHeight(TreeNode <E> node) {
        // height of empty tree = ZERO
        if (node == null)
            return 0;

        int leftHeight = treeHeight(node.left);
        int rightHeight = treeHeight(node.right);

        if (leftHeight > rightHeight)
            return leftHeight;
        else
            return rightHeight;
    }

    /** Return the no of nodes at given level - my own method */
    public int numberOfNodesAtLevel(TreeNode <E> node, int level) {
        if (root == null)
            return 0;
        if (level == 0)
            return 1;
        return numberOfNodesAtLevel(node.left, level-1) + numberOfNodesAtLevel(node.right, level-1);
    }

    /** Return the no of nodes in binary tree - my own method  */
    public int numberOfNodes(TreeNode <E> node) {
        if (node == null)
            return 0;
        return 1 + numberOfNodes(node.left) + numberOfNodes(node.right);
    }

    /** Calculate ACE - my own method  */
    public double calculateACE(TreeNode <E> node) {
        int n = numberOfNodes(node);
        int treeHeight = treeHeight(node);
        int sum = 0;
        int level = 0;
        for (level=0, sum=0; level < treeHeight; level++ ) {
            sum += numberOfNodesAtLevel(node, level) * (level + 1);
        }
       double ACE = sum / n;
       return ACE;
    }

    /** Calculate MinACE - my own method */
    public double calculateMinACE(TreeNode <E> node) {
        int n = numberOfNodes(node);
        int treeHeight = (int) Math.floor((Math.log(n))+1);
        int sum = 0;
        int level = 0;
        for (level=0, sum=0; level < treeHeight; level++ ) {
            sum += numberOfNodesAtLevel(node, level) * (level + 1);
        }
       double ACE = sum / n;
       return ACE;
    }

    /** Calculate MaxACE - my own method */
    public double calculateMaxACE(TreeNode <E> node) {
        int n = numberOfNodes(node);
        int treeHeight = n;
        int sum = 0;
        int level = 0;
        for (level=0, sum=0; level < treeHeight; level++ ) {
            sum += numberOfNodesAtLevel(node, level) * (level + 1);
        }
       double ACE = sum / n;
       return ACE;
    }

    /** Needs Balancing - my own method */
    public boolean needsBalancing(TreeNode <E> node) {
        double k = 1.25;
        double AceValue = calculateACE(node);
        double MinAceValue = calculateMinACE(node);
        if(AceValue > (MinAceValue*k))
            return true;
        return false;

    }

    /** Balance BST  - my own method, not complete yet */
    public void balanceBST(TreeNode <E> node) {
        int size = numberOfNodes(node);

    }

    /** Returns a path from the root leading to the specified element */
    public java.util.ArrayList<TreeNode<E>> path(E e) {
        java.util.ArrayList<TreeNode<E>> list = new java.util.ArrayList<TreeNode<E>>();
        TreeNode<E> current = root; // Start from the root

        while (current != null) {
            list.add(current); // Add the node to the list
            if (e.compareTo(current.element) < 0) {
                current = current.left;
            } else if (e.compareTo(current.element) > 0) {
                current = current.right;
            } else
                break;
        }

        return list; // Return an array of nodes
    }

    /**
     * Delete an element from the binary tree. Return true if the element is
     * deleted successfully Return false if the element is not in the tree
     */
    public boolean delete(E e) {
        // Locate the node to be deleted and also locate its parent node
        TreeNode<E> parent = null;
        TreeNode<E> current = root;
        while (current != null) {
            if (e.compareTo(current.element) < 0) {
                parent = current;
                current = current.left;
            } else if (e.compareTo(current.element) > 0) {
                parent = current;
                current = current.right;
            } else
                break; // Element is in the tree pointed at by current
        }

        if (current == null)
            return false; // Element is not in the tree

        // Case 1: current has no left children
        if (current.left == null) {
            // Connect the parent with the right child of the current node
            if (parent == null) {
                root = current.right;
            } else {
                if (e.compareTo(parent.element) < 0)
                    parent.left = current.right;
                else
                    parent.right = current.right;
            }
        } else {
            // Case 2: The current node has a left child
            // Locate the rightmost node in the left subtree of
            // the current node and also its parent
            TreeNode<E> parentOfRightMost = current;
            TreeNode<E> rightMost = current.left;

            while (rightMost.right != null) {
                parentOfRightMost = rightMost;
                rightMost = rightMost.right; // Keep going to the right
            }

            // Replace the element in current by the element in rightMost
            current.element = rightMost.element;

            // Eliminate rightmost node
            if (parentOfRightMost.right == rightMost)
                parentOfRightMost.right = rightMost.left;
            else
                // Special case: parentOfRightMost == current
                parentOfRightMost.left = rightMost.left;
        }

        size--;
        return true; // Element inserted
    }

    /** Obtain an iterator. Use inorder. */
    public java.util.Iterator<E> iterator() {
        return new InorderIterator();
    }

    // Inner class InorderIterator
    private class InorderIterator implements java.util.Iterator<E> {
        // Store the elements in a list
        private java.util.ArrayList<E> list = new java.util.ArrayList<E>();
        private int current = 0; // Point to the current element in list

        public InorderIterator() {
            inorder(); // Traverse binary tree and store elements in list
        }

        /** Inorder traversal from the root */
        private void inorder() {
            inorder(root);
        }

        /** Inorder traversal from a subtree */
        private void inorder(TreeNode<E> root) {
            if (root == null)
                return;
            inorder(root.left);
            list.add(root.element);
            inorder(root.right);
        }

        /** More elements for traversing? */
        public boolean hasNext() {
            if (current < list.size())
                return true;

            return false;
        }

        /** Get the current element and move to the next */
        public E next() {
            return list.get(current++);
        }

        /** Remove the current element */
        public void remove() {
            delete(list.get(current)); // Delete the current element
            list.clear(); // Clear the list
            inorder(); // Rebuild the list
        }
    }

    /** Remove all elements from the tree */
    public void clear() {
        root = null;
        size = 0;
    }
}

共有1个答案

耿招
2023-03-14

(1)为什么我们传递一个节点而不是树给这些方法?

回答:
一个BST是由它的根定义的,您可以实现接受根或树的方法--这是一个任意的决定。

(2)...我在网上看到过将一个节点传递给treeHeight方法,并通过在BST中插入元素,我们确实有节点,但如何调用这样的方法呢?这是我对OOP缺乏理解。

BST<Integer> b1 = new BST<Integer>();
b1.insert(1);
b1.insert(2);
b1.insert(3);
b1.insert(4);
int h = b1.treeHeight(b1.getRoot()); // get the height
int arraySize = b1.getSize();
Integer[] treeToArray = new Integer[arraySize];
iterator iter = b1.iterator();
int i=0;
while(iter.hasNext()) {
    treeToArray[i++] = (Integer)iter.next();
}

(4)为什么treeHeight()不起作用(总是返回零)?

回答:
因为它有一个bug,下面是修复它的方法:

/** Return tree height - my own method */
    public int treeHeight(TreeNode <E> node) {
        // height of empty tree = ZERO
        if (node == null)
            return 0;

        int leftHeight = treeHeight(node.left);
        int rightHeight = treeHeight(node.right);

        if (leftHeight > rightHeight)
            return leftHeight+1; // bug was here: you should return the height of the child + 1 (yourself)
        else
            return rightHeight+1; // and here
    }
 类似资料:
  • 我需要创建一个递归方法,它将二进制搜索树的根节点作为参数。这个递归方法随后将返回整个二叉搜索树中节点总数的int值。 这是我目前所掌握的: main方法调用节点如下所示: 所以我是按顺序运行搜索的,一旦我到达一个没有子节点的节点,我就会删除当前节点,返回父节点并继续。我对上面的方法进行了调试,当程序最终计数并删除根节点左右两侧的所有节点并尝试返回1时,程序以NullPointerException

  • 我很难按我教授想要的格式打印出一个二叉搜索树。 他的格式是这样的: 我的代码:

  • 树的特征和定义 树(Tree)是元素的集合。我们先以比较直观的方式介绍树。下面的数据结构是一个树: 树有多个节点(node),用以储存元素。某些节点之间存在一定的关系,用连线表示,连线称为边(edge)。边的上端节点称为父节点,下端称为子节点。树像是一个不断分叉的树根。 每个节点可以有多个子节点(children),而该节点是相应子节点的父节点(parent)。比如说,3,5是6的子节点,6是3,

  • 编写一个函数,如果给定的二叉搜索树包含给定的值,则返回1,否则返回0。 例如,对于以下树: N1(值:1,左:null,右:null) n2(值:2,左:n1,右:n3) N3(值:3,左:null,右:null) 对contains(&n2,3)的调用应返回1,因为根位于n2的树包含编号3。 函数应该返回1,然而,它返回0或者根本不返回。

  • 在二元搜索树的情况下,为什么我们不能简单地在一个节点有两个子节点的情况下,将一个节点的前一个节点替换为后一个节点?

  • 我必须编写一个二进制搜索树的实现,它可以处理库的库存。它读取一个包含所有书籍的文本文件,并将这些书籍按字母顺序添加到树中。我已经与Insertar()函数代码斗争了几天,但我无法使它正常工作,它基本上接收到一个指针,指向与书相关的所有数据的树根。如果根为NULL,则它将函数中输入的所有值初始化一个节点,并将内存方向指定为NULL节点。问题是,它在本地做,最终它没有分配它。谁能帮我纠正那个具体的功能