最常见的选择是CSC或CSR存储。这两种方法对于矩阵向量乘法都是有效的。如果你必须自己做,编写那些乘法例程也很容易。
也就是说,耶鲁存储也产生了非常有效的矩阵-向量乘法。如果您正在执行矩阵元素查找,那么您误解了如何使用格式。我建议您研究一些标准稀疏库,以了解矩阵向量乘法是如何实现的。
即使使用当前的存储空间,也可以执行O(n)复杂度的矩阵乘法。我所见过的所有稀疏矩阵向量乘法算法都归结为相同的步骤。例如,考虑y=ax。
for (i=0; i<N; i++)
for (j=0; j<N; j++)
y[i] += A[i,j]*x[j]
这就是导致您执行查找的原因。
但我并不是建议您坚持使用std::map
存储。那不会是超级高效的。我推荐CSC主要是因为它是应用最广泛的。
在使用numpy的python中,假设我有两个矩阵: 稀疏矩阵 密集的x*y矩阵 现在我想做,它将返回一个密集的矩阵。 但是,我只关心中非零的单元格,这意味着如果我这样做了,对我的应用程序不会有任何影响 <代码>S\u=S*S\u 显然,这将是对操作的浪费,因为我想把在
稀疏矩阵(Sparse Matrix) 注:压缩存储的矩阵可以分为特殊矩阵和稀疏矩阵。对于那些具有相同元素或零元素在矩阵中分布具有一定规律的矩阵,被称之为特殊矩阵。对于那些零元素数据远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称之为稀疏矩阵。 1. 稀疏矩阵的概念 在矩阵中,若数值为0的元素数目远远多于非0元素的数目时,则称该矩阵为稀疏矩阵。与之相反,若非0元素数目占大多数时,则称该矩阵
我正在计算两大组向量(具有相同特征)之间的余弦相似度。每组向量表示为一个scipy CSR稀疏矩阵a和B。我想计算一个x B^T,它不会稀疏。但是,我只需要跟踪超过某个阈值的值,例如0.8。我正试图用vanilla RDD在Pyspark中实现这一点,目的是使用为scipy CSR矩阵实现的快速向量操作。 A和B的行是标准化的,所以为了计算余弦相似度,我只需要找到A中每一行与B中每一行的点积。A的
我正在处理一个非常大的稀疏矩阵乘法(matmul)问题。作为一个例子,让我们说: > A是一个二进制(75 x 200,000)矩阵。它很稀疏,所以我使用csc进行存储。我需要执行以下matmul操作: B=A.转置()*A 输出将是大小为200Kx200K的稀疏对称矩阵。 不幸的是,B存储在我笔记本电脑上的RAM(或“核心”)中会变得太大。另一方面,我很幸运,因为B有一些属性可以解决这个问题。
我正在实现一个稀疏矩阵类,使用映射向量来存储数据(映射表示矩阵的一行,其中键是列的索引,值是该位置的maitrix的值)我已经编写了计算行列式的函数,但我不知道是否有一种方法可以计算这种节省的时间(因为矩阵是稀疏的,大多数值为零)在这里我的实现: 这是类接口 我计算行列式的方式是什么?假设运算符()以这种方式重载 提前感谢您的帮助
2.5.1 介绍 (密集) 矩阵是: 数据对象 存储二维值数组的数据结构 重要特征: 一次分配所有项目的内存 通常是一个连续组块,想一想Numpy数组 快速访问个项目(*) 2.5.1.1 为什么有稀疏矩阵? 内存,增长是n**2 小例子(双精度矩阵): In [2]: import numpy as np import matplotlib.pyplot as plt x = np.li