对更好的标题有什么建议吗?
在Qt中,有一个很好的信号和插槽功能。然而,它会告诉您是否可以在运行时(afc)期间将特定信号连接到特定时隙。
意图:
>
从模板创建一个包含“信号签名”(函数指针作为模板参数)的类,以允许将给定签名(传递参数的数量和类型)的“插槽”仅连接到具有类似签名的“已定义”信号;
必须简单易用。
现在的问题:我在ISignalSlotMap类中遇到一个“使用声明”的编译错误。模板多变量继承与可变参数类型-在这里它编译良好。
还有,有没有什么方法可以简化模板算法?
更新:第一个块可以在没有dll的情况下编译和运行
这可以在不链接到DLL的情况下进行编译
#include <iostream>
#include <type_traits>
#include <forward_list>
#include <memory>
//template wrapper
template <typename...>
struct TW
{};
//template to get Class type from pointer
template <class ReturnType, class ... ArgTypes>
constexpr ReturnType ClassFromPointer(void(ReturnType::*)(ArgTypes...));
//template to get pack of arguments' types
template <class ReturnType, class ... ArgTypes>
constexpr TW<ArgTypes...> ArgTypesPackFromPointer(void(ReturnType::*)(ArgTypes...));
template <auto ptr>
using FuncClass = decltype(ClassFromPointer(ptr));
template <auto ptr>
using FuncPack = decltype(ArgTypesPackFromPointer(ptr));
template <class ... ArgTypes>
struct Invoker
{
virtual void Invoke(ArgTypes ... args) = 0;
};
template <class ClType, class ... ArgTypes>
class InvokerImpl : public Invoker<ArgTypes...>
{
ClType *ptr_;
void(ClType::*pFunc_)(ArgTypes...);
public:
InvokerImpl(ClType* pObj, void(ClType::*pFunc)(ArgTypes...))
: ptr_(pObj),
pFunc_(pFunc)
{}
virtual void Invoke(ArgTypes ... args)
{
(ptr_->*pFunc_)(args...);
}
};
template <class ClType, class ... ArgTypes>
Invoker<ArgTypes...>* CreateInvoker(ClType* pObj, void(ClType::*pFunc)(ArgTypes...))
{
return new InvokerImpl<ClType, ArgTypes...>(pObj, pFunc);
}
template <class Pack>
class SlotContainerTranslated;
template <template <class ...> class Pack, class ... ArgTypes>
class SlotContainerTranslated<Pack<ArgTypes...>>
{
typedef std::unique_ptr<Invoker<ArgTypes...>> pInvoker;
std::forward_list<pInvoker> slots_;
public:
void AddInvoker(Invoker<ArgTypes...>* pInv)
{
slots_.push_front(std::move(pInvoker(pInv)));
}
void DispatchSignal(ArgTypes ... args)
{
auto start = slots_.begin();
while (start != slots_.end())
{
(*start)->Invoke(args...);
++start;
}
}
};
template <auto memfuncptr>
class ISlotContainer : SlotContainerTranslated<FuncPack<memfuncptr>>
{
public:
using SlotContainerTranslated<FuncPack<memfuncptr>>::AddInvoker;
using SlotContainerTranslated<FuncPack<memfuncptr>>::DispatchSignal;
};
template <auto ... memfuncPtrs>
class ISignalSlotMap : SlotContainerTranslated<FuncPack<memfuncPtrs>>...
{
public:
// using SlotContainerTranslated<FuncPack<memfuncPtrs>>::AddInvoker...;
// using SlotContainerTranslated<FuncPack<memfuncPtrs>>::DispatchSignal...;
};
////////////////////////////////////////////////////////////////////////
struct AlienSignals
{
void MindControl() {};
void MindControlPrint(int a, double b, int c, int d, const char* str) {};
void MindControlAdvise(int i, bool b) {};
};
struct Alien
{
static Alien* Invade();
virtual ISlotContainer<&AlienSignals::MindControlAdvise>& AccessSignal() = 0;
/*//this is what usage is expected to be like
virtual ISignalSlotMap<&AlienSignals::MindControl,
&AlienSignals::MindControlAdvise,
&AlienSignals::MindControlPrint>& AccessSignalMap() = 0;
*/
virtual ~Alien() = default;
};
class AlienImpl : public Alien
{
std::unique_ptr<ISlotContainer<&AlienSignals::MindControlAdvise>> signalMindControlAdvise_
{ new ISlotContainer<&AlienSignals::MindControlAdvise> };
// Inherited via Alien
virtual ISlotContainer<&AlienSignals::MindControlAdvise>& AccessSignal() override
{
return *signalMindControlAdvise_;
}
virtual ~AlienImpl() = default;
};
Alien * Alien::Invade()
{
return new AlienImpl;
}
struct Human
{
int id = 0;
Human(int i)
: id(i)
{}
void Print()
{
std::cout << "Human: " << id << "! " << std::endl;
}
void mPrint(int a, double b, int c, int d, const char* str)
{
std::cout << "Human: " << id << "! " << a << " " << b << " " << c << " " << d << " " << str << std::endl;
}
void Advise(int i, bool b)
{
auto colour = b ? "red" : "blue";
std::cout << "Human: " << id << "! I will take " << i << " of " << colour << " pills" << std::endl;
}
};
template <auto memfuncptr>
constexpr auto GetType()
{
return memfuncptr;
}
template <auto memfunc>
using PtrType = decltype(GetType<memfunc>());
int main()
{
Human person1{ 1 }, person2{ 2 }, person3{ 3 };
std::unique_ptr<Alien>alien{ Alien::Invade() };
alien->AccessSignal().AddInvoker(CreateInvoker(&person1, &Human::Advise));
alien->AccessSignal().AddInvoker(CreateInvoker(&person2, &Human::Advise));
alien->AccessSignal().AddInvoker(CreateInvoker(&person3, &Human::Advise));
alien->AccessSignal().DispatchSignal(42, false);
return 0;
}
UPDATE2:我发现问题在于扩展非类型模板参数包,所以“使用”可以工作。我仍然无法克服这个问题。
c非类型参数包扩展类似的问题,但与函数有关。我也找不到折叠表达式与继承的任何用法。
有一个答案显示了一种很有希望的方法:https://stackoverflow.com/a/53112843/9363996
但也有一些主要的缺点。一种是使用模板函数调用继承的函数。此示例编译并运行,但:
例2
#include <iostream>
template <class ...>
struct TW {};
template <class ClType, class ... ArgTypes>
constexpr ClType ClassType(void(ClType::*)(ArgTypes...));
template <class ClType, class ... ArgTypes>
constexpr TW<ArgTypes...> ArgsType(void(ClType::*)(ArgTypes...));
template <auto pFunc>
using class_trait = decltype(ClassType(pFunc));
template <auto pFunc>
using args_trait = decltype(ArgsType(pFunc));
template <class, class>
struct _func_trait;
template <class ClType, template <class...> class Pack, class ... ArgTypes>
struct _func_trait<ClType, Pack<ArgTypes...>>
{
typedef void(ClType::*FuncPtr)(ArgTypes...);
typedef ClType ClassType;
typedef Pack<ArgTypes...> Args;
};
template <auto pFunc>
struct func_traits : public _func_trait<class_trait<pFunc>, args_trait<pFunc>>
{};
template <auto L, class Pack>
struct ClassImpl;
template <auto L, template <class ...> class Pack, class ... ArgTypes>
struct ClassImpl<L, Pack<ArgTypes...>>
{
void invoke(ArgTypes ... args)
{
(std::cout << ... << args) << std::endl;
}
};
template <auto L, auto ...R>
class My_class;
template <auto L>
class My_class<L> : public ClassImpl <L, args_trait<L>>
{
};
template <auto L, auto ... R>
class My_class : public My_class<L>, public My_class<R...>
{
public:
template <auto T, class ... ArgTypes>
void Invoke(ArgTypes... args)
{
My_class<T>::invoke(args...);
return;
}
};
struct Signals
{
void func1(int a, double b) {}
void func2(const char*, const char*) {}
constexpr void func3(int a, double b, int c, bool d);
};
int main()
{
Signals s;
My_class<&Signals::func1, &Signals::func2, &Signals::func3> mSignls;
mSignls.Invoke<&Signals::func1>(4, 6.31);
mSignls.Invoke<&Signals::func2>("Invoking funcion:", "function 2");
return 0;
}
最后我提出了解决方案,它的用法非常简单,正如我所希望的。
这是我的工作示例!
#include <tuple>
#include <iostream>
template <class ...>
struct TW {};
template <class ClType, class ... ArgTypes>
constexpr ClType ClassType(void(ClType::*)(ArgTypes...));
template <class ClType, class ... ArgTypes>
constexpr TW<ArgTypes...> ArgsType(void(ClType::*)(ArgTypes...));
template <auto pFunc>
using class_trait = decltype(ClassType(pFunc));
template <auto pFunc>
using args_trait = decltype(ArgsType(pFunc));
template <class, class>
struct _func_trait;
template <class ClType, template <class...> class Pack, class ... ArgTypes>
struct _func_trait<ClType, Pack<ArgTypes...>>
{
typedef void(ClType::*FuncPtr)(ArgTypes...);
typedef ClType ClassType;
typedef Pack<ArgTypes...> Args;
};
template <auto pFunc>
struct func_traits : public _func_trait<class_trait<pFunc>, args_trait<pFunc>>
{};
template <auto L, class Pack = args_trait<L>>
struct ClassImpl;
template <auto L, template <class ...> class Pack, class ... ArgTypes>
struct ClassImpl<L, Pack<ArgTypes...>>
{
void invoke(decltype(L), ArgTypes ... args)
{
(std::cout << ... << args) << std::endl;
}
};
template <class ... Impls>
struct ISignalMap : protected Impls...
{
using Impls::invoke...;
};
template <auto ... L>
struct SignalsMap
{
//just to see the pointers' values
static constexpr std::tuple<decltype(L)...> t{ std::make_tuple(L...) };
ISignalMap<ClassImpl<L>...> Signals{};
};
struct Signals
{
void func1(int a, double b) {}
void func12(int a, double b) {}
void func2(double a, double b, int c) {}
constexpr void func3(const char*) {}
};
int main(void)
{
auto& ref = SignalsMap<&Signals::func1, &Signals::func2, &Signals::func3>::t;
//add SignalsMap as member to your class and pass the pointers to
//methods you need to be signals
SignalsMap<&Signals::func1, &Signals::func2, &Signals::func3> sm;
//first parameter is a pointer to a signal you want to invoke
sm.Signals.invoke(&Signals::func2, 4.8, 15.16, 23);
sm.Signals.invoke(&Signals::func1, 23, 42.108);
sm.Signals.invoke(&Signals::func12, 23, 42.108);
sm.Signals.invoke(&Signals::func3, "Eat this!");
return 0;
}
当我编译时,我得到了这些错误:
在C++11之前,类模板和函数模板只能含有固定数量的模板参数。C++11增强了模板功能,允许模板定义中包含0到任意个模板参数,这就是可变参数模板。可变参数模板的加入使得C++11的功能变得更加强大,而由此也带来了许多神奇的用法。 可变参数模板 可变参数模板和普通模板的语义是一样的,只是写法上稍有区别,声明可变参数模板时需要在typename或class后面带上省略号...: template<ty
我试图在类型s. t上专门化一个类。它忽略了给定类型的恒定性。在这种情况下,该类型是一个模板模板参数: 上面的代码在GCC 4.8.4和clang 5.0(with-std=c 11)中都抱怨bar在与匹配FOFType模板参数化的类一起使用时未定义。即使我删除了sfinae参数,仍然无法找到特化。 这个问题的一个例子可以在这里找到:https://godbolt.org/g/Cjci9C.在上面
我需要声明一个可以存储不同类型容器的类。也就是说,如果它能处理STD::Bitset和STD::Array就好了。但是,这两个类需要不同的模板参数······是否可能(以及如何)使用模板化模板类和可变模板来声明此类类? 示例(但错误):
考虑以下示例: 而且,如果我们将非类型模板参数的类型改为占位符类型,如下所示: 然后,GCC接受,而Clang拒绝它(两者都拒绝,如上)。 海合会演示,铿锵演示。 (1)GCC HEAD 11.0.0 202 10117和Clang HEAD 12.0.0(20210118),。
我正在学习C 17非类型模板参数的新功能。我编写了一个简单的代码片段,如下所示: 据我所知,福 但是,语句使用clang、MSVC 19.27编译,但在GCC 10.2、MSVC 19.25编译时失败。 我的问题是:为什么编译器的行为不同?标准对此有何规定? 链接到编译器资源管理器: 叮当声https://godbolt.org/z/66M695 海湾合作委员会https://godbolt.or