当前位置: 首页 > 知识库问答 >
问题:

用贪婪的方法使用矩阵链

萧永长
2023-03-14

我自己在读clr,我发现很难理解一些概念。

与贪婪相比,在动态编程中,我们在全局范围内做出选择,最终得到最优解。我通过多图中最短路径的例子以及背包问题很好地理解了这些概念。

> < li>

我无法理解我们如何在Matrix Chain中动态地做出选择。我理解了递归关系,但我不会规范动态决策。(我知道它具有最优子结构特性)

如果用贪婪方法求解矩阵链算法,它将如何工作?

谢谢!

共有1个答案

姚浩歌
2023-03-14

这个问题不能用贪心的方法解决。

例如矩阵链[3x2]•[2x3]•[3x4]。

结果将是 (([3x2]•[2x3]) •[3x4]) 使用贪婪方法,但最佳答案是 ([3x2]•([2x3] •[3x4]))。

更多详情:https://www.cs.washington.edu/education/courses/421/04su/slides/matrixchain.pdf

 类似资料:
  • 本文向大家介绍贪婪算法相关面试题,主要包含被问及贪婪算法时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法。贪婪算法所得到的结果往往不是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。贪婪算法并没有固定的算法解决框架,算法的关键是贪婪策

  • 贪婪 vs 不贪婪 当重复一个正则表达式时,如用 a*,操作结果是尽可能多地匹配模式。当你试着匹配一对对称的定界符,如 HTML 标志中的尖括号时这个事实经常困扰你。匹配单个 HTML 标志的模式不能正常工作,因为 .* 的本质是“贪婪”的 #!python >>> s = '<html><head><title>Title</title>' >>> len(s) 32 >>> print re.

  • 问题是用硬币、一角硬币、五分硬币和一便士来换零钱,并且使用最少的硬币总数。在四个面值分别是硬币、一角硬币、五分硬币和一便士的特殊情况下,我们有c1=25、c2=10、c3=5和c4=1。 如果我们只有四分之一硬币、一角硬币和一分硬币(没有五分镍币)可供使用,贪婪算法将使用六枚硬币——四分之一硬币和五便士——兑换30美分,而我们可以使用三枚硬币,即三个一角硬币。 给定一组面额,我们如何判断贪婪方法是

  • 有人有线索为什么它对案件2不起作用吗?非常感谢你的帮助。编辑:案例2的预期结果是6130美元。我好像得到了6090美元。

  • 以下是我需要咨询以寻求帮助的问题: 编写一个贪婪算法,使用贪婪算法以尽可能少的硬币进行兑换。您将获得一个硬币值数组和一个金额:。返回一个包含每个硬币计数的数组。 例如:应该返回数组,该数组指示每枚硬币的数量:2枚50美分硬币,1枚25美分硬币,1枚10美分硬币),没有镍币(5美分),和2便士(1美分),加起来是137美分。 从computeChange返回的数组应该与第一个参数(硬币)的长度相同。

  • 任务是典型的背包问题。求解时应采用贪婪算法。我设法创建了下面的代码,但它工作得太慢了。你能告诉我怎么加快速度吗?谢谢你。 c是背包的重量限制。n表示价格权重对的数量(这两个数字都是int类型,而不是float)。限制如下:(1)如果在相同重量的元素之间选择,价格最高的元素应该被取;(2)如果在相同价格和相同重量的元素之间选择,第一个输入的元素应该被取。