参考回答:
1)、梯度裁剪(Clipping Gradient)
既然在BP过程中会产生梯度消失(就是偏导无限接近0,导致长时记忆无法更新),那么最简单粗暴的方法,设定阈值,当梯度小于阈值时,更新的梯度为阈值。
优点:简单粗暴
缺点:很难找到满意的阈值
2)、LSTM(Long Short-Term Memory)
一定程度上模仿了长时记忆,相比于梯度裁剪,最大的优点就是,自动学习在什么时候可以将error反向传播,自动控制哪些是需要作为记忆存储在LSTM cell中。一般长时记忆模型包括写入,读取,和忘记三个过程对应到LSTM中就变成了input_gate,output_gate,
forget_gate,三个门,范围在0到1之间,相当于对输入输出进行加权的学习,利用大量数据来自动学习加权的参数(即学习了哪些错误可以用BP更新参数)。具体的公式表达:
优点:模型自动学习更新参数
本文向大家介绍梯度消失梯度爆炸怎么解决相关面试题,主要包含被问及梯度消失梯度爆炸怎么解决时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 1)、使用 ReLU、LReLU、ELU、maxout 等激活函数 sigmoid函数的梯度随着x的增大或减小和消失,而ReLU不会。 2)、使用批规范化 通过规范化操作将输出信号x规范化到均值为0,方差为1保证网络的稳定性。从上述分析分可以看到,反向传播
本文向大家介绍如何解决RNN梯度消失和弥散的情况?相关面试题,主要包含被问及如何解决RNN梯度消失和弥散的情况?时的应答技巧和注意事项,需要的朋友参考一下 为了解决梯度爆炸问题,Thomas Mikolov首先提出了一个简单的启发性的解决方案,就是当梯度大于一定阈值的的时候,将它截断为一个较小的数。具体如算法1所述: 算法:当梯度爆炸时截断梯度(伪代码) 下图可视化了梯度截断的效果。它展示了一个小
本文向大家介绍梯度消失相关面试题,主要包含被问及梯度消失时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 在神经网络中,当前面隐藏层的学习速率低于后面隐藏层的学习速率,即随着隐藏层数目的增加,分类准确率反而下降了。这种现象叫做消失的梯度问题。
本文向大家介绍RNN梯度消失问题,为什么LSTM和GRU可以解决此问题相关面试题,主要包含被问及RNN梯度消失问题,为什么LSTM和GRU可以解决此问题时的应答技巧和注意事项,需要的朋友参考一下 参考回答: RNN由于网络较深,后面层的输出误差很难影响到前面层的计算,RNN的某一单元主要受它附近单元的影响。而LSTM因为可以通过阀门记忆一些长期的信息,相应的也就保留了更多的梯度。而GRU也可通过重
本文向大家介绍如何解决梯度消失和梯度膨胀?相关面试题,主要包含被问及如何解决梯度消失和梯度膨胀?时的应答技巧和注意事项,需要的朋友参考一下 答: (1) 梯度消失:根据链式法则,如果每一层神经元对上一层的输出的偏导乘上权重解雇小于1的话,那么即使这个结果是0.99,经过足够多层传播之后,误差对输入层的偏导会趋于0; (2) 梯度膨胀:根据链式法则,如果每一层神经元对上一层的输出的偏导乘上权重结果都
本文向大家介绍如何解决梯度消失和梯度爆炸?相关面试题,主要包含被问及如何解决梯度消失和梯度爆炸?时的应答技巧和注意事项,需要的朋友参考一下 (1)梯度消失: 根据链式法则,如果每一层神经元对上一层的输出的偏导乘上权重结果都小于1的话,那么即使这个结果是0.99,在经过足够多层传播之后,误差对输入层的偏导会趋于0 可以采用ReLU激活函数有效的解决梯度消失的情况,也可以用Batch Normaliz