当前位置: 首页 > 面试题库 >

JavaScript中最快的阶乘函数是什么?

邵兴庆
2023-03-14
问题内容

寻找JavaScript 中 阶乘 函数的真正快速实现。有什么建议吗?


问题答案:

您可以[搜索(1 …100)!在WolframAlpha上预先计算阶乘序列。

前100个数字是:

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000, 620448401733239439360000, 15511210043330985984000000, 403291461126605635584000000, 10888869450418352160768000000, 304888344611713860501504000000, 8841761993739701954543616000000, 265252859812191058636308480000000, 8222838654177922817725562880000000, 263130836933693530167218012160000000, 8683317618811886495518194401280000000, 295232799039604140847618609643520000000, 10333147966386144929666651337523200000000, 371993326789901217467999448150835200000000, 13763753091226345046315979581580902400000000, 523022617466601111760007224100074291200000000, 20397882081197443358640281739902897356800000000, 815915283247897734345611269596115894272000000000, 33452526613163807108170062053440751665152000000000, 1405006117752879898543142606244511569936384000000000, 60415263063373835637355132068513997507264512000000000, 2658271574788448768043625811014615890319638528000000000, 119622220865480194561963161495657715064383733760000000000, 5502622159812088949850305428800254892961651752960000000000, 258623241511168180642964355153611979969197632389120000000000, 12413915592536072670862289047373375038521486354677760000000000, 608281864034267560872252163321295376887552831379210240000000000, 30414093201713378043612608166064768844377641568960512000000000000, 1551118753287382280224243016469303211063259720016986112000000000000, 80658175170943878571660636856403766975289505440883277824000000000000, 4274883284060025564298013753389399649690343788366813724672000000000000, 230843697339241380472092742683027581083278564571807941132288000000000000, 12696403353658275925965100847566516959580321051449436762275840000000000000, 710998587804863451854045647463724949736497978881168458687447040000000000000, 40526919504877216755680601905432322134980384796226602145184481280000000000000, 2350561331282878571829474910515074683828862318181142924420699914240000000000000, 138683118545689835737939019720389406345902876772687432540821294940160000000000000, 8320987112741390144276341183223364380754172606361245952449277696409600000000000000, 507580213877224798800856812176625227226004528988036003099405939480985600000000000000, 31469973260387937525653122354950764088012280797258232192163168247821107200000000000000, 1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000, 8247650592082470666723170306785496252186258551345437492922123134388955774976000000000000000, 544344939077443064003729240247842752644293064388798874532860126869671081148416000000000000000, 36471110918188685288249859096605464427167635314049524593701628500267962436943872000000000000000, 2480035542436830599600990418569171581047399201355367672371710738018221445712183296000000000000000, 171122452428141311372468338881272839092270544893520369393648040923257279754140647424000000000000000, 11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000, 850478588567862317521167644239926010288584608120796235886430763388588680378079017697280000000000000000, 61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000, 4470115461512684340891257138125051110076800700282905015819080092370422104067183317016903680000000000000000, 330788544151938641225953028221253782145683251820934971170611926835411235700971565459250872320000000000000000, 24809140811395398091946477116594033660926243886570122837795894512655842677572867409443815424000000000000000000, 1885494701666050254987932260861146558230394535379329335672487982961844043495537923117729972224000000000000000000, 145183092028285869634070784086308284983740379224208358846781574688061991349156420080065207861248000000000000000000, 11324281178206297831457521158732046228731749579488251990048962825668835325234200766245086213177344000000000000000000, 894618213078297528685144171539831652069808216779571907213868063227837990693501860533361810841010176000000000000000000, 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000, 5797126020747367985879734231578109105412357244731625958745865049716390179693892056256184534249745940480000000000000000000, 475364333701284174842138206989404946643813294067993328617160934076743994734899148613007131808479167119360000000000000000000, 39455239697206586511897471180120610571436503407643446275224357528369751562996629334879591940103770870906880000000000000000000, 3314240134565353266999387579130131288000666286242049487118846032383059131291716864129885722968716753156177920000000000000000000, 281710411438055027694947944226061159480056634330574206405101912752560026159795933451040286452340924018275123200000000000000000000, 24227095383672732381765523203441259715284870552429381750838764496720162249742450276789464634901319465571660595200000000000000000000, 2107757298379527717213600518699389595229783738061356212322972511214654115727593174080683423236414793504734471782400000000000000000000, 185482642257398439114796845645546284380220968949399346684421580986889562184028199319100141244804501828416633516851200000000000000000000, 16507955160908461081216919262453619309839666236496541854913520707833171034378509739399912570787600662729080382999756800000000000000000000, 1485715964481761497309522733620825737885569961284688766942216863704985393094065876545992131370884059645617234469978112000000000000000000000, 135200152767840296255166568759495142147586866476906677791741734597153670771559994765685283954750449427751168336768008192000000000000000000000, 12438414054641307255475324325873553077577991715875414356840239582938137710983519518443046123837041347353107486982656753664000000000000000000000, 1156772507081641574759205162306240436214753229576413535186142281213246807121467315215203289516844845303838996289387078090752000000000000000000000, 108736615665674308027365285256786601004186803580182872307497374434045199869417927630229109214583415458560865651202385340530688000000000000000000000, 10329978488239059262599702099394727095397746340117372869212250571234293987594703124871765375385424468563282236864226607350415360000000000000000000000, 991677934870949689209571401541893801158183648651267795444376054838492222809091499987689476037000748982075094738965754305639874560000000000000000000000, 96192759682482119853328425949563698712343813919172976158104477319333745612481875498805879175589072651261284189679678167647067832320000000000000000000000, 9426890448883247745626185743057242473809693764078951663494238777294707070023223798882976159207729119823605850588608460429412647567360000000000000000000000, 933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168640000000000000000000000, 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

如果仍要自己计算值,则可以使用备忘录:

var f = [];
function factorial (n) {
  if (n == 0 || n == 1)
    return 1;
  if (f[n] > 0)
    return f[n];
  return f[n] = factorial(n-1) * n;
} ​

编辑:21.08.2014

解决方案2

我认为添加一个 懒惰的* 迭代 阶乘函数 的工作示例将很有用,该 函数 使用 大数 来获得带有 备忘录的
准确 结果,并将 缓存 作为比较
***

var f = [new BigNumber("1"), new BigNumber("1")];
var i = 2;
function factorial(n)
{
  if (typeof f[n] != 'undefined')
    return f[n];
  var result = f[i-1];
  for (; i <= n; i++)
      f[i] = result = result.multiply(i.toString());
  return result;
}
var cache = 100;
//due to memoization following line will cache first 100 elements
factorial(cache);


 类似资料:
  • 问题内容: 我从书中得知,您应该为循环编写这样的代码: 因此不会每次都计算。 其他人则说编译器会对此做一些优化,因此您可以编写: 我只想知道哪种是最佳实践? 问题答案: 在使用大多数现代浏览器执行此测试之后… http://jsben.ch/dyM52 当前,最快的循环形式(我认为在语法上最明显)。 具有长度缓存的循环的标准 我想肯定的是,我为JavaScript引擎开发人员鼓掌。应该优化运行时间

  • 本文向大家介绍JavaScript中的纯函数是什么?,包括了JavaScript中的纯函数是什么?的使用技巧和注意事项,需要的朋友参考一下 纯功能 甲纯函数是一个 确定性函数。这意味着每次传递相同的输入时,该函数将返回相同的输出。用数学术语来说,它只是一个定义明确的函数。 一个纯函数具有以下特性 它仅取决于自己的论点。 它不会尝试将变量更改为超出其范围。 它不会产生任何副作用。 以下示例不是纯函数

  • 本文向大家介绍Javascript中的高阶函数介绍,包括了Javascript中的高阶函数介绍的使用技巧和注意事项,需要的朋友参考一下 这是一个有趣的东西,这或许也在说明Javascript对象的强大。我们要做的就是在上一篇说到的那样,输出一个Hello,World,而输入的东西是print('Hello')('World'),而这就是所谓的高阶函数。 高阶函数 高阶看上去就像是一种先进的编程技术

  • 本文向大家介绍什么是JavaScript中的匿名函数?,包括了什么是JavaScript中的匿名函数?的使用技巧和注意事项,需要的朋友参考一下 函数表达式与函数声明相似,并且具有与函数声明相同的语法。可以定义“命名”函数表达式(例如,在调用堆栈中可能使用表达式的名称)或“匿名”函数表达式。 匿名函数表达式的示例(未使用名称)- 可以使用引用该函数的变量名来调用此函数- 总之,匿名函数是未存储但与变

  • 本文向大家介绍什么是JavaScript中的函数链接?,包括了什么是JavaScript中的函数链接?的使用技巧和注意事项,需要的朋友参考一下 功能链 函数链接不过是使用点表示法将函数分组在一行中而已。这种类型的链接使代码非常简洁,并提高了性能。在这里,我们将学习使用常规对象进行函数链接。 a)没有功能链  在以下示例中的对象“OBJ”被创建并在该对象中的公共属性 称为“I”是使用关键字创建“这个

  • 我是C编程新手,我想找出给定数的阶乘中尾随零的数量 我尝试计算数字的模,它将返回给定数字的最后一位作为余数,然后将删除最后一个数字。 执行程序后,输出总是将尾随零的数量显示为“0”,如果(ln=!0)条件始终得到满足,即使存在零。