分区,顺序写磁盘,0-copy
主要内容:1.消费消息的性能优化手段,2.消费者组1.消费消息的性能优化手段 1.1 稀疏索引 Kafka 利用offset 和 timestamp 查到消息。 B Tree 类的索引并不适用于 Kafka。哈希索引看起来却非常合适。 为了加快读操作,如果只需要在内存中维护一个「从 offset 到日志文件偏移量」的映射关系即可,每次根据 offset 查找消息时,从哈希表中得到偏移量,再去读文件即可。(根据 timestamp 查消息也可以采用
主要内容:1. 存储消息的性能优化手段1. 存储消息的性能优化手段 存储消息属于 Broker 端的核心功能 IO多路复用, 磁盘顺序写, page缓存, 分区分段结构 1.1 IO 多路复用 对于 Kafka Broker 来说,要做到高性能,首先要考虑的是:设计出一个高效的网络通信模型,用来处理它和 Producer 以及 Consumer 之间的消息传递问题。 SocketServer : Kafka采用的是Reactor 网络
主要内容:1. 如何理解高性能设计,2. Kafka 高性能设计的全景图,3. 生产消息的性能优化手段,4.Kafka源码分析Kafka 的高性能设计可以说是全方位的,从 Prodcuer 、到 Broker、再到 Consumer, 1. 如何理解高性能设计 对于线程池、多级缓存、IO 多路复用、零拷贝等技术是一个系统性的问题,至少需要深入到操作系统层面。从 CPU 和存储入手,去了解底层的实现机制,然后再自底往上,一层一层去解密和贯穿起来。 高性能设计离不开的就是计算和IO 计算: 1、让更
主要内容:1.Kafka 的技术难点,2.Kafka 架构设计,3.Kafka的宏观架构设计,4.Kafka 的整体架构1.Kafka 的技术难点 Kafka 为实时日志流而生,要处理的并发和数据量非常大。可见,Kafka 本身就是一个高并发系统,它必然会遇到高并发场景下典型的三高挑战:高性能、高可用和高扩展。 为了简化实现的复杂度,Kafka 最终采用了很巧妙的消息模型:它将所有消息进行了持久化存储,让消费者自己各取所需,想取哪个消息,想什么时候取都行,只需要传递一个消息的 offset 进行
主要内容:1.Kafka存储难度,2.Kafka 的存储选型分析,3.Kafka 的存储设计Kafka使用的是Logging(日志文件)这种很原始的方式来存储消息 对于存储设计有一些知识点: Append Only、Linear Scans、磁盘顺序写、页缓存、零拷贝、稀疏索引、二分查找等等。 Append Only Data Structures 的一些存储系统比如HBase, Cassandra, RocksDB 1.Kafka存储难度 Kafka 通过简化消息模型,将自己退化成了一
E立方管理平台对数据安全有完善的考虑,除了平台级别的安全措施(详见:http://www.care-e.com/tips/base/about/2015/0610/80.html)外,还在系统中有很多的安全措施设定: 一、账户与密码安全策略 用管理员(admin)身份登录E立方管理平台-->系统管理-->其它设置-->账户与密码安全策略,如下图: 打开后,如下图 按自己的实际需要设定,即可。 二、