我已经使用CNN训练了二进制分类模型,这是我的代码
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2)) # define a binary classification problem
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
verbose=1,
validation_data=(x_test, y_test))
在这里,我想像TensorFlow一样获得每一层的输出,我该怎么做?
你可以使用以下命令轻松获取任何图层的输出: model.layers[index].output
对于所有图层,请使用以下命令:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs] # evaluation functions
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print layer_outs
注:为了模拟差使用learning_phase如1.在layer_outs以其它方式使用0.
编辑:(基于评论)
K.function
创建theano / tensorflow
张量函数,该函数随后用于从给定输入的符号图中获取输出。
现在K.learning_phase()
需要输入作为输入,因为许多Keras层(如Dropout / Batchnomalization
)都依赖它来在训练和测试期间更改行为。
因此,如果你删除代码中的辍学层,则可以简单地使用:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functors = [K.function([inp], [out]) for out in outputs] # evaluation functions
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test]) for func in functors]
print layer_outs
编辑2:更优化
我刚刚意识到,先前的答案并不是针对每个函数评估进行优化的,因为数据将被传输到CPU-> GPU内存中,并且还需要对低层进行n-n-over的张量计算。
相反,这是一种更好的方法,因为你不需要多个函数,而只需一个函数即可为你提供所有输出的列表:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers] # all layer outputs
functor = K.function([inp, K.learning_phase()], outputs ) # evaluation function
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs
问题内容: 我正在使用Windows 10,Python 3.5和tensorflow 1.1.0。我有以下脚本: 我得到错误: 问题答案: 如果您写: 然后不是图层,而是图层的输出。该层是 所以看来您的意思是: 这是完整的代码段:
在模型中添加LSTM层之前,我不确定是否需要添加密集输入层。例如,使用以下模型: LSTM层是否为输入层,密集层是否为输出层(即无隐藏层)?或者Keras是否创建了一个输入层,这意味着LSTM层将是一个隐藏层?
问题内容: 我的模型是一个简单的完全连接的网络,如下所示: 因此,保存模型后,我想将输入提供给第3层。我现在正在做的是: 但这不起作用,即我收到诸如不兼容输入之类的错误,输入应为元组等。错误消息为: 有什么办法可以让我在网络中间传递自己的输入并获取输出,而不是在开始时输入并从末尾获取输出?任何帮助将不胜感激。 问题答案: 首先,您必须在Keras中学习到,在输入上应用层时,在该层内创建了一个新节点
本文向大家介绍keras K.function获取某层的输出操作,包括了keras K.function获取某层的输出操作的使用技巧和注意事项,需要的朋友参考一下 如下所示: 加载训练好并保存的网络模型 加载数据(图像),并将数据处理成array形式 指定输出层 将处理后的数据输入,然后获取输出 其中,K.function有两种不同的写法: 1. 获取名为layer_name的层的输出 layer
本文向大家介绍keras 获取某层输出 获取复用层的多次输出实例,包括了keras 获取某层输出 获取复用层的多次输出实例的使用技巧和注意事项,需要的朋友参考一下 官方文档很全面,搜索功能也很好。但是如果你想单独实现某个功能,根本无从搜寻。于是我写了这个笔记。从功能出发。 两个tensor经过一个layer实例会产生两个输出。 这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输
问题内容: 我拥有的代码(我无法更改)将Resnet与input_tensor一起使用。 研究源代码,ResNet50函数使用创建一个新的keras输入层,然后创建模型的其余部分。这是我要用自己的模型复制的行为。我从h5文件加载我的模型。 由于此模型已经具有输入层,因此我想用定义的新输入层替换它。 如何替换输入层? 问题答案: 使用以下方法保存模型时: 它将保存以下内容: 模型的体系结构,允许创建