官方文档很全面,搜索功能也很好。但是如果你想单独实现某个功能,根本无从搜寻。于是我写了这个笔记。从功能出发。
两个tensor经过一个layer实例会产生两个输出。
a = Input(shape=(280, 256)) b = Input(shape=(280, 256)) lstm = LSTM(32) encoded_a = lstm(a) encoded_b = lstm(b) lstm.output
这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出。
>> AttributeError: Layer lstm_1 has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `get_output_at(node_index)` instead.
所以如果想要得到多个输出中的一个:
assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b
补充知识:kears训练中如何实时输出卷积层的结果?
在训练unet模型时,发现预测结果和真实结果几乎完全差距太大,想着打印每层输出的结果查看问题在哪?
但是发现kears只是提供了训练完成后在模型测试时输出每层的函数。并没有提供训练时的函数,同时本着不对原有代码进行太大改动。最后实现了这个方法。
即新建一个输出节点添加到现有的网络结构里面。
#新建一个打印层。 class PrintLayer(Layer): #初始化方法,不须改变 def __init__(self, **kwargs): super(PrintLayer, self).__init__(**kwargs) #调用该层时执行的方法 def call(self, x): x = tf.Print(x,[x],message="x is: ",summarize=65536) #调用tf的Print方法打印tensor方法,第一个参数为输入的x,第二个参数为要输出的参数,summarize参数为输出的元素个数。 return x; #一定要返回tf.Print()函数返回的变量,不要直接使用传入的变量。 #接着在网络中引入 conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) print11 = PrintLayer()(conv9) conv10 = Conv2D(1, 1, activation = 'sigmoid')(print11) #PrintLayer层处理的结果一定要在下一层用到,不然不会打印tensor。该结点可以加在任何结点之间。
以上这篇keras 获取某层输出 获取复用层的多次输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
本文向大家介绍keras K.function获取某层的输出操作,包括了keras K.function获取某层的输出操作的使用技巧和注意事项,需要的朋友参考一下 如下所示: 加载训练好并保存的网络模型 加载数据(图像),并将数据处理成array形式 指定输出层 将处理后的数据输入,然后获取输出 其中,K.function有两种不同的写法: 1. 获取名为layer_name的层的输出 layer
问题内容: 我已经使用CNN训练了二进制分类模型,这是我的代码 在这里,我想像TensorFlow一样获得每一层的输出,我该怎么做? 问题答案: 你可以使用以下命令轻松获取任何图层的输出: 对于所有图层,请使用以下命令: 注:为了模拟差使用learning_phase如1.在layer_outs以其它方式使用0. 编辑:(基于评论) 创建张量函数,该函数随后用于从给定输入的符号图中获取输出。 现在
我正在开发一个程序,该程序用一个无方向的Conv2D层(跨距=1)替换跨距的Conv2D层(跨距=2),然后在激活层之后添加一个AveragePooling2D层(跨距=2)。换句话说,AveragePooling2D层将减少输出维度,而不是让Conv2D层减少输出维度。 我使用本文中描述的方法将Conv2D层替换为非结构化版本,并在激活后插入averagepoolig2d层。替换Conv2D层效
在模型中添加LSTM层之前,我不确定是否需要添加密集输入层。例如,使用以下模型: LSTM层是否为输入层,密集层是否为输出层(即无隐藏层)?或者Keras是否创建了一个输入层,这意味着LSTM层将是一个隐藏层?
问题内容: 我的模型是一个简单的完全连接的网络,如下所示: 因此,保存模型后,我想将输入提供给第3层。我现在正在做的是: 但这不起作用,即我收到诸如不兼容输入之类的错误,输入应为元组等。错误消息为: 有什么办法可以让我在网络中间传递自己的输入并获取输出,而不是在开始时输入并从末尾获取输出?任何帮助将不胜感激。 问题答案: 首先,您必须在Keras中学习到,在输入上应用层时,在该层内创建了一个新节点
本文向大家介绍给keras层命名,并提取中间层输出值,保存到文档的实例,包括了给keras层命名,并提取中间层输出值,保存到文档的实例的使用技巧和注意事项,需要的朋友参考一下 更新: 感谢评论区提供的方案。 采用model.summary(),model.get_config()和for循环均可获得Keras的层名。 示例如下图 对于keras特定层的命名,只需在层内添加 name 即可 补充知识