当前位置: 首页 > 面试题库 >

熊猫和Matplotlib-fill_between()vs datetime64

储毅
2023-03-14
问题内容

有一个Pandas DataFrame:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 300 entries, 5220 to 5519
Data columns (total 3 columns):
Date             300 non-null datetime64[ns]
A                300 non-null float64
B                300 non-null float64
dtypes: datetime64[ns](1), float64(2)
memory usage: 30.5 KB

我想绘制A和B系列vs日期。

plt.plot_date(data['Date'], data['A'], '-')
plt.plot_date(data['Date'], data['B'], '-')

然后我要在A系列和B系列之间的区域上应用fill_between():

plt.fill_between(data['Date'], data['A'], data['B'],
                where=data['A'] >= data['B'],
                facecolor='green', alpha=0.2, interpolate=True)

哪个输出:

TypeError: ufunc 'isfinite' not supported for the input types, and the inputs
could not be safely coerced to any supported types according to the casting 
rule ''safe''

matplotlib是否在fill_between()函数中接受pandas datetime64对象?我应该将其转换为其他日期类型吗?


问题答案:

大熊猫寄存器的转换器中matplotlib.units.registry,其可将数字转换的日期时间的类型(如大熊猫DatetimeIndex,和D型的numpy的阵列datetime64)来matplotlib
datenums,但它不处理大熊猫Series与D型datetime64

In [67]: import pandas.tseries.converter as converter

In [68]: c = converter.DatetimeConverter()

In [69]: type(c.convert(df['Date'].values, None, None))
Out[69]: numpy.ndarray              # converted (good)

In [70]: type(c.convert(df['Date'], None, None))
Out[70]: pandas.core.series.Series  # left unchanged

fill_between 检查并使用转换器处理数据(如果存在)。

因此,作为一种解决方法,您可以将日期转换为的NumPy数组datetime64

d = data['Date'].values
plt.fill_between(d, data['A'], data['B'],
                where=data['A'] >= data['B'],
                facecolor='green', alpha=0.2, interpolate=True)

例如,

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

N = 300
dates = pd.date_range('2000-1-1', periods=N, freq='D')
x = np.linspace(0, 2*np.pi, N)
data = pd.DataFrame({'A': np.sin(x), 'B': np.cos(x),
               'Date': dates})
plt.plot_date(data['Date'], data['A'], '-')
plt.plot_date(data['Date'], data['B'], '-')

d = data['Date'].values
plt.fill_between(d, data['A'], data['B'],
                where=data['A'] >= data['B'],
                facecolor='green', alpha=0.2, interpolate=True)
plt.xticks(rotation=25)
plt.show()


 类似资料:
  • 问题内容: 我有一个固定宽度的数据文件,其中包含日期,但是当我尝试绘制数据时,日期无法在x轴上正确显示。 我的档案看起来像 等等 我用 熊猫 读文件 所以我想这里的问题是从熊猫到matplotlib日期时间的转换,如何进行转换? 我也直接尝试了熊猫: 但这失败了 TypeError:空的“ Series”:没有要绘制的数字数据 问题答案: 如果您使用包含列名而不是字符串的列表,则data.set_

  • 我正在使用此数据框: 我想通过名称和水果将其聚合,得到每个名称的水果总数。 我试着按名字和水果分组,但如何得到水果的总数呢。

  • 我必须根据以下col1、col2和loc的数据进行分组,并计算col3中的项数。此外,还应考虑开始和结束日期,即日期应在2021 1月1日至2021 1月31日之间。最终结果应显示在col4中。 数据 预期输出

  • 问题内容: Python 3.4和Pandas 0.15.0 df是一个数据框,而col1是一列。使用下面的代码,我正在检查是否存在值10,并将此类值替换为1000。 这是另一个例子。这次,我将基于索引更改col2中的值。 这两种都会产生以下警告: 最后, 这会产生类似的警告,并带有以下建议: 我不确定我是否理解警告中指出的讨论。编写这三行代码的更好方法是什么? 请注意,该操作有效。 问题答案:

  • 问题内容: 我想将 大于任意数(在这种情况下为100)的值替换为(因为如此大的值表示实验失败)。以前,我使用它来替换不需要的值: 但是,出现以下错误: 从这个StackExchange问​​题来看,有时似乎可以忽略此警告,但是我不能很好地跟踪讨论,无法确定这是否适用于我的情况。警告基本上是让我知道我将覆盖我的某些值吗? 编辑:据我所知,一切都按其应有的方式进行。作为后续措施,我的替换值方法是否非标

  • 我有一个数据帧,如: 所以我想通过两个“for循环”添加一些列,如: 新的类似数据帧的图片: 我的代码不起作用: 如何编写代码来获得像第二张图片这样的数据帧?