当前位置: 首页 > 面试题库 >

N-Gram,tf-idf和余弦相似度在Python中的简单实现

红明德
2023-03-14
问题内容

我需要比较存储在数据库中的文档,并得出0到1之间的相似度分数。

我需要使用的方法必须非常简单。实现n-gram的原始版本(可以定义要使用的克数),以及tf-idf和Cosine相似度的简单实现。

是否有任何程序可以做到这一点?还是应该从头开始编写?


问题答案:

查看NLTK软件包:http://www.nltk.org,它具有您需要的一切

对于cosine_similarity:

def cosine_distance(u, v):
    """
    Returns the cosine of the angle between vectors v and u. This is equal to
    u.v / |u||v|.
    """
    return numpy.dot(u, v) / (math.sqrt(numpy.dot(u, u)) * math.sqrt(numpy.dot(v, v)))

对于ngrams:

def ngrams(sequence, n, pad_left=False, pad_right=False, pad_symbol=None):
    """
    A utility that produces a sequence of ngrams from a sequence of items.
    For example:

    >>> ngrams([1,2,3,4,5], 3)
    [(1, 2, 3), (2, 3, 4), (3, 4, 5)]

    Use ingram for an iterator version of this function.  Set pad_left
    or pad_right to true in order to get additional ngrams:

    >>> ngrams([1,2,3,4,5], 2, pad_right=True)
    [(1, 2), (2, 3), (3, 4), (4, 5), (5, None)]

    @param sequence: the source data to be converted into ngrams
    @type sequence: C{sequence} or C{iterator}
    @param n: the degree of the ngrams
    @type n: C{int}
    @param pad_left: whether the ngrams should be left-padded
    @type pad_left: C{boolean}
    @param pad_right: whether the ngrams should be right-padded
    @type pad_right: C{boolean}
    @param pad_symbol: the symbol to use for padding (default is None)
    @type pad_symbol: C{any}
    @return: The ngrams
    @rtype: C{list} of C{tuple}s
    """

    if pad_left:
        sequence = chain((pad_symbol,) * (n-1), sequence)
    if pad_right:
        sequence = chain(sequence, (pad_symbol,) * (n-1))
    sequence = list(sequence)

    count = max(0, len(sequence) - n + 1)
    return [tuple(sequence[i:i+n]) for i in range(count)]

对于tf-idf,您将必须首先计算分布,我正在使用Lucene来做到这一点,但您可能会对NLTK做类似的事情,请使用FreqDist:

http://nltk.googlecode.com/svn/trunk/doc/book/ch01.html#frequency_distribution_index_term

如果您喜欢pylucene,这将告诉您如何上下班tf.idf

    # reader = lucene.IndexReader(FSDirectory.open(index_loc))
    docs = reader.numDocs()
    for i in xrange(docs):
        tfv = reader.getTermFreqVector(i, fieldname)
        if tfv:
            rec = {}
            terms = tfv.getTerms()
            frequencies = tfv.getTermFrequencies()
            for (t,f,x) in zip(terms,frequencies,xrange(maxtokensperdoc)):
                    df= searcher.docFreq(Term(fieldname, t)) # number of docs with the given term
                        tmap.setdefault(t, len(tmap))
                        rec[t] = sim.tf(f) * sim.idf(df, max_doc)  #compute TF.IDF
            # and normalize the values using cosine normalization
            if cosine_normalization:
                denom = sum([x**2 for x in rec.values()])**0.5
                for k,v in rec.items():
                    rec[k] = v / denom


 类似资料:
  • 本文向大家介绍TF-IDF与余弦相似性的应用(二) 找出相似文章,包括了TF-IDF与余弦相似性的应用(二) 找出相似文章的使用技巧和注意事项,需要的朋友参考一下 上一次,我用TF-IDF算法自动提取关键词。 今天,我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,"Google新闻"在主新闻下方,还提供多条相似的新闻。 为了找出相似的文章,需要用

  • 问题内容: 我计算了两个文档的tf / idf值。以下是tf / idf值: 这些文件就像: 如何使用这些值来计算余弦相似度? 我知道我应该计算点积,然后找到距离并除以点积。如何使用我的值来计算? 还有一个问题: 两个文档的字数相同是否重要? 问题答案: a * b是点积 一些细节: 是。在某种程度上,a和b必须具有相同的长度。但是a和b通常具有稀疏表示,您只需要存储非零条目,就可以更快地计算范数

  • 本文向大家介绍TF-IDF与余弦相似性的应用(一) 自动提取关键词,包括了TF-IDF与余弦相似性的应用(一) 自动提取关键词的使用技巧和注意事项,需要的朋友参考一下 TF-IDF与余弦相似性的应用(一):自动提取关键词 这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题。 有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加

  • 问题内容: 假设您在数据库中按以下方式构造了一个表: 为了清楚起见,应输出: 请注意,由于向量存储在数据库中,因此我们仅需要存储非零条目。在此示例中,我们只有两个向量$ v_ {99} =(4,3,4,0)$和$ v_ {1234} =(0,5,2,3)$都在$ \ mathbb {R}中^ 4 $。 这些向量的余弦相似度应为$ \ displaystyle \ frac {23} {\ sqrt

  • 本文向大家介绍Python 余弦相似度与皮尔逊相关系数 计算实例,包括了Python 余弦相似度与皮尔逊相关系数 计算实例的使用技巧和注意事项,需要的朋友参考一下 夹角余弦(Cosine) 也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2) 两个n维

  • 问题内容: 我正在使用Elasticsearch进行研究。我打算使用余弦相似度,但我注意到它不可用,而我们将BM25作为默认评分功能。 有什么理由吗?余弦相似度是否不适用于查询文档?为什么选择BM25作为默认值?谢谢 问题答案: 长期的Elasticsearch使用TF / IDF算法来查找查询中的相似性。但是以前的数字版本更有效地更改为BM25。您可以阅读文档中的信息。好的文章解释了什么是ela