我的输入只是一个具有339732行和两列的csv文件:
我正在尝试在堆叠的LSTM模型上训练数据:
data_dim = 29
timesteps = 8
num_classes = 2
model = Sequential()
model.add(LSTM(30, return_sequences=True,
input_shape=(timesteps, data_dim))) # returns a sequence of vectors of dimension 30
model.add(LSTM(30, return_sequences=True)) # returns a sequence of vectors of dimension 30
model.add(LSTM(30)) # return a single vector of dimension 30
model.add(Dense(1, activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.summary()
model.fit(X_train, y_train, batch_size = 400, epochs = 20, verbose = 1)
这将引发错误:
追溯(最近一次调用为最新一次):在model.fit(X_train,y_train,batch_size = 400,epochs =
20,verbose = 1)中,文件“ first_approach.py”,第80行ValueError:检查模型输入时出错:预期lstm_1_input具有3个维,但数组的形状为(339732,29)
我尝试使用重塑输入,X_train.reshape((1,339732, 29))
但是显示错误却不起作用:
ValueError:检查模型输入时出错:预期lstm_1_input具有形状(None,8,29),但具有形状为(1,339732,29)的数组
如何将我的输入输入LSTM?
设置timesteps = 1
(因为我想要每个实例一个时间步长),并将X_train和X_test重塑为:
import numpy as np
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
这工作了!
问题内容: 嗨,我正在为一类分类构建图像分类器,其中在运行此模型时使用了自动编码器,我在此行得到此错误(autoencoder_model.fit)(ValueError:检查目标时出错:预期model_2具有形状(无,252,252,1)但得到形状为(300,128,128,3)的数组。) 问题答案: 解码器的输出形状与训练数据的形状之间根本不兼容。(目标表示输出)。 我看到您有2个MaxPoo
问题内容: 我正在尝试使用学习的.h5文件进行预测。学习模型如下。 我将输入的形式编写如下。 我以为形状正确,但是发生以下错误。 ValueError:检查时出错:预期density_1_input的形状为(3,),但数组的形状为(1,) 的形状显然是,但上述错误并没有消失(数据来自的CSV文件)。 我怎么解决这个问题? 问题答案: x的形状显然是,但上述误差仍在继续。 您是对的,但这 不是 ke
这是我制作的简单的cnn架构。我使用的图像是灰度图。 如果我将通道值指定为粗体分类器中指定的1。添加(卷积2d(32,kernel\u size=3,input\u shape=(50,50,1),激活='relu')) Im获取错误为 检查输入时出错:预期conv2d\u 1\u输入具有形状(50,50,1),但获得具有形状(50,50,3)的数组 但是如果我使用过滤器大小为3,我不会得到任何错
我使用imdb示例创建了LSTM模型,并尝试用我自己的字符串预测情绪 但是当我试图做预测时,我被跟踪跟踪弄错了 Traceback(最近的调用最后): 文件“”,第1行,在runfile中('C:/Users/Radosław/nauka/python/motionanalysis/motionconsole.py',wdir='C:/Users/Radosław/nauka/python/mot
我完成了对我的模型的培训,该模型由20个类组成,精度达到0.9993,目前正在进行测试。我正在学习本教程,但我在 培训数据定义为: 这就是我对cnn的定义 这里也是我对我的模型的总结 我得到的错误是 ---------------------------------------------------------------------------中的ValueError回溯(最近一次调用)---
当我使用澳大利亚数据集编写降雨预测代码时,我在拟合ann模型并运行10的纪元值时遇到了错误。我使用numpy、熊猫、matplotlib、seborn等库作为导入。对于模型的运行,我使用Keras进行密集和顺序搜索。我还使用标准标量来标准化x的值。我得到了这一行的错误-ann.fit(x_train,y_train,batch_size=10,nb_epoch=10,详细=1)下面是我的错误-Va