在Python 2中使用:
>>> df.groupby(df.index / 3).mean()
col1
0 2.0
1 0.5
问题内容: 我有一个熊猫数据框,如下所示: 我想按它排序,但该列只是一个。 我试图将列设置为日期对象,但是遇到了一种格式不需要的格式的问题。所需的格式为等。 因此,现在我试图找出如何使numpy将“美国”日期转换为ISO标准,以便可以使它们成为日期对象,以便可以对它们进行排序。 我该如何将这些美国日期转换为ISO标准,或者我在熊猫中缺少更直接的方法? 问题答案: 您可以用来转换为日期时间对象。它带
问题内容: 我想对以下数据框进行排序: 我想对它进行排序,以便根据列表对LSE列进行重新排序: 当然,其他列也需要相应地重新排序。有没有办法在熊猫里做到这一点? 问题答案: pandas0.15版中对s的改进支持使您可以轻松做到这一点: 如果这只是临时排序,则可能不希望将LSE列保留为a ,但是如果您希望这种排序能够在不同的上下文中使用几次,则是一个很好的解决方案。 在更高版本的,中,已被替换为,
我有一个数据帧: 我需要添加第一行[2,3,4]来获得: 我尝试了和函数,但找不到正确的方法。 如何添加/插入系列到数据框?
问题内容: 我的数据框看起来像这样,只是更大了。 首先,我尝试对每个列进行单独排序。我试过玩类似的东西:但是最终只会出错。如何分别对每一列进行排序,以得到类似以下内容的结果: 其次,我希望将列中的行连接起来 在用’‘替换np.nan之后,我可以将所有内容与上面的行结合起来,但是结果一起被粉碎(’AB’),并且需要额外的步骤来清理(变成’A:B’之类)。 问题答案: 这是一种方法: 但是,您所做的有
问题内容: 我有一个具有以下内容的Series对象: 问题陈述: 我想按月显示它,并计算每个月的平均价格,然后按月以排序的方式显示它。 所需输出: 我想到了制作列表并将其传递给sort函数的方法: 但是 sort_values 不支持序列化。 我有一个大问题是,即使 最初可以工作,但是在我做完之后,它并不能保持排序后的顺序。 总而言之,我需要从初始数据帧起这两列。对datetime列进行排序,并使
问题内容: 我有一个这样的数据框: 我要 然后然后为每个pidx 然后是每个组的前2名。 我正在寻找的结果是这样的: 我试过的是: 这似乎可行,但我不知道如果处理庞大的数据集,这是否是正确的方法。我还能使用什么其他最佳方法来获得这种结果? 问题答案: 有两种解决方案: 1.和合计: 2.和合计: 时间 :