IO Tools

优质
小牛编辑
128浏览
2023-12-01

Pandas I/O API是一组顶级读取器函数,像pd.read_csv()一样访问,通常返回Pandas对象。

读取文本文件(或平面文件)的两个主要功能是read_csv()read_table() 。 它们都使用相同的解析代码智能地将表格数据转换为DataFrame对象 -

pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer',
names=None, index_col=None, usecols=None

pandas.read_csv(filepath_or_buffer, sep='\t', delimiter=None, header='infer',
names=None, index_col=None, usecols=None

以下是csv文件数据的样子 -

S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900

将此数据另存为temp.csv并对其执行操作。

S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900

将此数据另存为temp.csv并对其执行操作。

read.csv

read.csv从csv文件中读取数据并创建DataFrame对象。

import pandas as pd
df=pd.read_csv("temp.csv")
print df

output如下 -

   S.No     Name   Age       City   Salary
0     1      Tom    28    Toronto    20000
1     2      Lee    32   HongKong     3000
2     3   Steven    43   Bay Area     8300
3     4      Ram    38  Hyderabad     3900

自定义索引

这指定csv文件中的列以使用index_col.自定义索引index_col.

import pandas as pd
df=pd.read_csv("temp.csv",index_col=['S.No'])
print df

output如下 -

S.No   Name   Age       City   Salary
1       Tom    28    Toronto    20000
2       Lee    32   HongKong     3000
3    Steven    43   Bay Area     8300
4       Ram    38  Hyderabad     3900

转换器(Converters)

列的dtype可以作为dict传递。

import pandas as pd
df = pd.read_csv("temp.csv", dtype={'Salary': np.float64})
print df.dtypes

output如下 -

S.No       int64
Name      object
Age        int64
City      object
Salary   float64
dtype: object

默认情况下,Salary列的dtypeint ,但结果显示为float因为我们已经显式地转换了类型。

因此,数据看起来像浮动 -

  S.No   Name   Age      City    Salary
0   1     Tom   28    Toronto   20000.0
1   2     Lee   32   HongKong    3000.0
2   3  Steven   43   Bay Area    8300.0
3   4     Ram   38  Hyderabad    3900.0

header_names

使用names参数指定标头的名称。

import pandas as pd
df=pd.read_csv("temp.csv", names=['a', 'b', 'c','d','e'])
print df

output如下 -

       a        b    c           d        e
0   S.No     Name   Age       City   Salary
1      1      Tom   28     Toronto    20000
2      2      Lee   32    HongKong     3000
3      3   Steven   43    Bay Area     8300
4      4      Ram   38   Hyderabad     3900

请注意,标题名称附加了自定义名称,但文件中的标题尚未消除。 现在,我们使用header参数删除它。

如果标题位于第一行之外的行中,则将行号传递给标题。 这将跳过前面的行。

import pandas as pd 
df=pd.read_csv("temp.csv",names=['a','b','c','d','e'],header=0)
print df

output如下 -

      a        b    c           d        e
0  S.No     Name   Age       City   Salary
1     1      Tom   28     Toronto    20000
2     2      Lee   32    HongKong     3000
3     3   Steven   43    Bay Area     8300
4     4      Ram   38   Hyderabad     3900

skiprows

skiprows会跳过指定的行数。

import pandas as pd
df=pd.read_csv("temp.csv", skiprows=2)
print df

output如下 -

    2      Lee   32    HongKong   3000
0   3   Steven   43    Bay Area   8300
1   4      Ram   38   Hyderabad   3900