Basic Functionality

优质
小牛编辑
129浏览
2023-12-01

到目前为止,我们了解了三个Pandas DataStructures以及如何创建它们。 我们将主要关注DataFrame对象,因为它在实时数据处理中很重要,并且还讨论了一些其他DataStructures。

系列基本功能

S.No.属性或方法描述
1axes返回行轴标签的列表。
2dtype返回对象的dtype。
3empty如果系列为空,则返回True。
4ndim根据定义1,返回基础数据的维数。
5size返回基础数据中的元素数。
6values将系列返回为ndarray。
7head()返回前n行。
8tail()返回最后n行。

现在让我们创建一个Series并查看上面列出的所有属性操作。

例子 (Example)

import pandas as pd
import numpy as np
#Create a series with 100 random numbers
s = pd.Series(np.random.randn(4))
print s

output如下 -

0   0.967853
1  -0.148368
2  -1.395906
3  -1.758394
dtype: float64

axes

返回系列标签的列表。

import pandas as pd
import numpy as np
#Create a series with 100 random numbers
s = pd.Series(np.random.randn(4))
print ("The axes are:")
print s.axes

output如下 -

The axes are:
[RangeIndex(start=0, stop=4, step=1)]

上述结果是从0到5的值列表的紧凑格式,即[0,1,2,3,4]。

empty

返回表示Object是否为空的布尔值。 True表示对象为空。

import pandas as pd
import numpy as np
#Create a series with 100 random numbers
s = pd.Series(np.random.randn(4))
print ("Is the Object empty?")
print s.empty

output如下 -

Is the Object empty?
False

ndim

返回对象的维数。 根据定义,Series是一维数据结构,因此它返回

import pandas as pd
import numpy as np
#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print s
print ("The dimensions of the object:")
print s.ndim

output如下 -

0   0.175898
1   0.166197
2  -0.609712
3  -1.377000
dtype: float64
The dimensions of the object:
1

尺寸

返回系列的大小(长度)。

import pandas as pd
import numpy as np
#Create a series with 4 random numbers
s = pd.Series(np.random.randn(2))
print s
print ("The size of the object:")
print s.size

output如下 -

0   3.078058
1  -1.207803
dtype: float64
The size of the object:
2

values

以数组形式返回系列中的实际数据。

import pandas as pd
import numpy as np
#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print s
print ("The actual data series is:")
print s.values

output如下 -

0   1.787373
1  -0.605159
2   0.180477
3  -0.140922
dtype: float64
The actual data series is:
[ 1.78737302 -0.60515881 0.18047664 -0.1409218 ]

头和尾

要查看Series或DataFrame对象的小样本,请使用head()和tail()方法。

head()返回前n行(观察索引值)。 要显示的默认元素数为5,但您可以传递自定义数字。

import pandas as pd
import numpy as np
#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print ("The original series is:")
print s
print ("The first two rows of the data series:")
print s.head(2)

output如下 -

The original series is:
0   0.720876
1  -0.765898
2   0.479221
3  -0.139547
dtype: float64
The first two rows of the data series:
0   0.720876
1  -0.765898
dtype: float64

tail()返回最后n行(观察索引值)。 要显示的默认元素数为5,但您可以传递自定义数字。

import pandas as pd
import numpy as np
#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print ("The original series is:")
print s
print ("The last two rows of the data series:")
print s.tail(2)

output如下 -

The original series is:
0 -0.655091
1 -0.881407
2 -0.608592
3 -2.341413
dtype: float64
The last two rows of the data series:
2 -0.608592
3 -2.341413
dtype: float64

DataFrame基本功能

现在让我们了解DataFrame基本功能是什么。 下表列出了有助于DataFrame基本功能的重要属性或方法。

S.No.属性或方法描述
1T转置行和列。
2axes返回一个列表,其中行轴标签和列轴标签为唯一成员。
3dtypes返回此对象中的dtypes。
4empty如果NDFrame完全为空,则为True [无项目]; 如果任何轴的长度为0。
5ndim轴数/数组尺寸。
6shape返回表示DataFrame维度的元组。
7sizeNDFrame中的元素数。
8valuesNDFrame的Numpy表示。
9head()返回前n行。
10tail()返回最后n行。

现在让我们创建一个DataFrame,并查看上述属性的运行方式。

例子 (Example)

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our data series is:")
print df

output如下 -

Our data series is:
    Age   Name    Rating
0   25    Tom     4.23
1   26    James   3.24
2   25    Ricky   3.98
3   23    Vin     2.56
4   30    Steve   3.20
5   29    Smith   4.60
6   23    Jack    3.80

T (Transpose)

返回DataFrame的转置。 行和列将互换。

import pandas as pd
import numpy as np
# Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
# Create a DataFrame
df = pd.DataFrame(d)
print ("The transpose of the data series is:")
print df.T

output如下 -

The transpose of the data series is:
         0     1       2      3      4      5       6
Age      25    26      25     23     30     29      23
Name     Tom   James   Ricky  Vin    Steve  Smith   Jack
Rating   4.23  3.24    3.98   2.56   3.2    4.6     3.8

axes

返回行轴标签和列轴标签的列表。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Row axis labels and column axis labels are:")
print df.axes

output如下 -

Row axis labels and column axis labels are:
[RangeIndex(start=0, stop=7, step=1), Index([u'Age', u'Name', u'Rating'],
dtype='object')]

dtypes

返回每列的数据类型。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("The data types of each column are:")
print df.dtypes

output如下 -

The data types of each column are:
Age     int64
Name    object
Rating  float64
dtype: object

empty

返回表示Object是否为空的布尔值; True表示对象为空。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Is the object empty?")
print df.empty

output如下 -

Is the object empty?
False

ndim

返回对象的维数。 根据定义,DataFrame是一个2D对象。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The dimension of the object is:")
print df.ndim

output如下 -

Our object is:
      Age    Name     Rating
0     25     Tom      4.23
1     26     James    3.24
2     25     Ricky    3.98
3     23     Vin      2.56
4     30     Steve    3.20
5     29     Smith    4.60
6     23     Jack     3.80
The dimension of the object is:
2

shape

返回表示DataFrame维度的元组。 元组(a,b),其中a表示行数, b表示列数。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The shape of the object is:")
print df.shape

output如下 -

Our object is:
   Age   Name    Rating
0  25    Tom     4.23
1  26    James   3.24
2  25    Ricky   3.98
3  23    Vin     2.56
4  30    Steve   3.20
5  29    Smith   4.60
6  23    Jack    3.80
The shape of the object is:
(7, 3)

尺寸

返回DataFrame中的元素数。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The total number of elements in our object is:")
print df.size

output如下 -

Our object is:
    Age   Name    Rating
0   25    Tom     4.23
1   26    James   3.24
2   25    Ricky   3.98
3   23    Vin     2.56
4   30    Steve   3.20
5   29    Smith   4.60
6   23    Jack    3.80
The total number of elements in our object is:
21

values

将数据框中的实际数据作为NDarray.

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our object is:")
print df
print ("The actual data in our data frame is:")
print df.values

output如下 -

Our object is:
    Age   Name    Rating
0   25    Tom     4.23
1   26    James   3.24
2   25    Ricky   3.98
3   23    Vin     2.56
4   30    Steve   3.20
5   29    Smith   4.60
6   23    Jack    3.80
The actual data in our data frame is:
[[25 'Tom' 4.23]
[26 'James' 3.24]
[25 'Ricky' 3.98]
[23 'Vin' 2.56]
[30 'Steve' 3.2]
[29 'Smith' 4.6]
[23 'Jack' 3.8]]

头和尾

要查看DataFrame对象的一小部分示例,请使用head()和tail()方法。 head()返回前n行(观察索引值)。 要显示的默认元素数为5,但您可以传递自定义数字。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our data frame is:")
print df
print ("The first two rows of the data frame is:")
print df.head(2)

output如下 -

Our data frame is:
    Age   Name    Rating
0   25    Tom     4.23
1   26    James   3.24
2   25    Ricky   3.98
3   23    Vin     2.56
4   30    Steve   3.20
5   29    Smith   4.60
6   23    Jack    3.80
The first two rows of the data frame is:
   Age   Name   Rating
0  25    Tom    4.23
1  26    James  3.24

tail()返回最后n行(观察索引值)。 要显示的默认元素数为5,但您可以传递自定义数字。

import pandas as pd
import numpy as np
#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
   'Age':pd.Series([25,26,25,23,30,29,23]), 
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print ("Our data frame is:")
print df
print ("The last two rows of the data frame is:")
print df.tail(2)

output如下 -

Our data frame is:
    Age   Name    Rating
0   25    Tom     4.23
1   26    James   3.24
2   25    Ricky   3.98
3   23    Vin     2.56
4   30    Steve   3.20
5   29    Smith   4.60
6   23    Jack    3.80
The last two rows of the data frame is:
    Age   Name    Rating
5   29    Smith    4.6
6   23    Jack     3.8