6.1.17 Index
优质
小牛编辑
128浏览
2023-12-01
TensorFlow's public C++ API includes only the API for executing graphs, as of version 0.5. To control the execution of a graph from C++:
- Build the computation graph using the Python API.
- Use tf.train.write_graph() to write the graph to a file.
Load the graph using the C++ Session API. For example:
// Reads a model graph definition from disk, and creates a session object you // can use to run it. Status LoadGraph(string graph_file_name, Session** session) { GraphDef graph_def; TF_RETURN_IF_ERROR( ReadBinaryProto(Env::Default(), graph_file_name, &graph_def)); TF_RETURN_IF_ERROR(NewSession(SessionOptions(), session)); TF_RETURN_IF_ERROR((*session)->Create(graph_def)); return Status::OK(); }
Run the graph with a call to
session->Run()
Classes
- tensorflow::Env
- tensorflow::EnvWrapper
- tensorflow::RandomAccessFile
- tensorflow::Session
- tensorflow::Status
- tensorflow::Tensor
- tensorflow::TensorBuffer
- tensorflow::TensorShape
- tensorflow::TensorShapeIter
- tensorflow::TensorShapeUtils
- tensorflow::Thread
- tensorflow::WritableFile