4.2 持久化

优质
小牛编辑
140浏览
2023-12-01

不要害怕文件系统!

Kafka 对消息的存储和缓存严重依赖于文件系统。人们对于“磁盘速度慢”的普遍印象,使得人们对于持久化的架构能够提供强有力的性能产生怀疑。事实上,磁盘的速度比人们预期的要慢的多,也快得多,这取决于人们使用磁盘的方式。而且设计合理的磁盘结构通常可以和网络一样快。

关于磁盘性能的关键事实是,磁盘的吞吐量和过去十年里磁盘的寻址延迟不同。因此,使用6个7200rpm、SATA接口、RAID-5的磁盘阵列在JBOD配置下的顺序写入的性能约为600MB/秒,但随机写入的性能仅约为100k/秒,相差6000倍以上。因为线性的读取和写入是磁盘使用模式中最有规律的,并且由操作系统进行了大量的优化。现代操作系统提供了 read-ahead 和 write-behind 技术,read-ahead 是以大的 data block 为单位预先读取数据,而 write-behind 是将多个小型的逻辑写合并成一次大型的物理磁盘写入。关于该问题的进一步讨论可以参考 ACM Queue article,他们发现实际上顺序磁盘访问在某些情况下比随机内存访问还要快

为了弥补这种性能差异,现代操作系统在越来越注重使用内存对磁盘进行 cache。现代操作系统主动将所有空闲内存用作 disk caching,代价是在内存回收时性能会有所降低。所有对磁盘的读写操作都会通过这个统一的 cache。如果不使用直接I/O,该功能不能轻易关闭。因此即使进程维护了 in-process cache,该数据也可能会被复制到操作系统的 pagecache 中,事实上所有内容都被存储了两份。

此外,Kafka 建立在 JVM 之上,任何了解 Java 内存使用的人都知道两点:

  1. 对象的内存开销非常高,通常是所存储的数据的两倍(甚至更多)。
  2. 随着堆中数据的增加,Java 的垃圾回收变得越来越复杂和缓慢。

受这些因素影响,相比于维护 in-memory cache 或者其他结构,使用文件系统和 pagecache 显得更有优势--我们可以通过自动访问所有空闲内存将可用缓存的容量至少翻倍,并且通过存储紧凑的字节结构而不是独立的对象,有望将缓存容量再翻一番。这样使得32GB的机器缓存容量可以达到28-30GB,并且不会产生额外的 GC 负担。此外,即使服务重新启动,缓存依旧可用,而 in-process cache 则需要在内存中重建(重建一个10GB的缓存可能需要10分钟),否则进程就要从 cold cache 的状态开始(这意味着进程最初的性能表现十分糟糕)。这同时也极大的简化了代码,因为所有保持 cache 和文件系统之间一致性的逻辑现在都被放到了 OS 中,这样做比一次性的进程内缓存更准确、更高效。如果你的磁盘使用更倾向于顺序读取,那么 read-ahead 可以有效的使用每次从磁盘中读取到的有用数据预先填充 cache。

这里给出了一个非常简单的设计:相比于维护尽可能多的 in-memory cache,并且在空间不足的时候匆忙将数据 flush 到文件系统,我们把这个过程倒过来。所有数据一开始就被写入到文件系统的持久化日志中,而不用在 cache 空间不足的时候 flush 到磁盘。实际上,这表明数据被转移到了内核的 pagecache 中。

这种 pagecache-centric 的设计风格出现在一篇关于 Varnish 设计的文章中。

常量时间就足够了

消息系统使用的持久化数据结构通常是和 BTree 相关联的消费者队列或者其他用于存储消息源数据的通用随机访问数据结构。BTree 是最通用的数据结构,可以在消息系统能够支持各种事务性和非事务性语义。
虽然 BTree 的操作复杂度是 O(log N),但成本也相当高。通常我们认为 O(log N) 基本等同于常数时间,但这条在磁盘操作中不成立。磁盘寻址是每10ms一跳,并且每个磁盘同时只能执行一次寻址,因此并行性受到了限制。
因此即使是少量的磁盘寻址也会很高的开销。由于存储系统将非常快的cache操作和非常慢的物理磁盘操作混合在一起,当数据随着 fixed cache 增加时,可以看到树的性能通常是非线性的——比如数据翻倍时性能下降不只两倍。

所以直观来看,持久化队列可以建立在简单的读取和向文件后追加两种操作之上,这和日志解决方案相同。这种架构的优点在于所有的操作复杂度都是O(1),而且读操作不会阻塞写操作,读操作之间也不会互相影响。这有着明显的性能优势,由于性能和数据大小完全分离开来——服务器现在可以充分利用大量廉价、低转速的1+TB SATA硬盘。
虽然这些硬盘的寻址性能很差,但他们在大规模读写方面的性能是可以接受的,而且价格是原来的三分之一、容量是原来的三倍。

在不产生任何性能损失的情况下能够访问几乎无限的硬盘空间,这意味着我们可以提供一些其它消息系统不常见的特性。例如:在 Kafka 中,我们可以让消息保留相对较长的一段时间(比如一周),而不是试图在被消费后立即删除。正如我们后面将要提到的,这给消费者带来了很大的灵活性。