当前位置: 首页 > 工具软件 > nlp-lang > 使用案例 >

基于ansj_seg和nlp-lang的简单nlp工具类

何正德
2023-12-01

1、首先在pom中引入ansj_seg和nlp-lang的依赖包,

  ansj_seg包的作用:

    这是一个基于n-Gram+CRF+HMM的中文分词的java实现;

    分词速度达到每秒钟大约200万字左右(mac air下测试),准确率能达到96%以上;

    目前实现了.中文分词. 中文姓名识别 . 用户自定义词典,关键字提取,自动摘要,关键字标记等功能;

    可以应用到自然语言处理等方面,适用于对分词效果要求高的各种项目;

  nlp-lang包的作用(nlp常用工具和组件):

    工具:词语标准化、tire树结构、双数组tire树、文本断句、html标签清理、Viterbi算法增加;

    组件:汉字转拼音、简繁体转换、bloomfilter、指纹去重、SimHash文章相似度计算、词贡献统计、基于内存的搜索提示、WordWeight词频统计,词idf统计,词类别相关度统计;

Maven:

<!-- nlp-lang -->
<dependency>
    <groupId>org.nlpcn</groupId>
    <artifactId>nlp-lang</artifactId>
    <version>1.7.2</version>
</dependency>
<!-- ansj_seg -->
<dependency>
    <groupId>org.ansj</groupId>
    <artifactId>ansj_seg</artifactId>
    <version>5.1.2</version>
</dependency>

2、创建WordUtil类,如下:

package com.mengyao.nlp.util;

import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;

import org.ansj.app.keyword.KeyWordComputer;
import org.ansj.app.keyword.Keyword;
import org.ansj.app.summary.SummaryComputer;
import org.ansj.app.summary.pojo.Summary;
import org.ansj.domain.Result;
import org.ansj.domain.Term;
import org.ansj.splitWord.analysis.IndexAnalysis;
import org.ansj.splitWord.analysis.NlpAnalysis;
import org.ansj.splitWord.analysis.ToAnalysis;
import org.apache.commons.lang3.StringUtils;
import org.nlpcn.commons.lang.jianfan.JianFan;
import org.nlpcn.commons.lang.pinyin.Pinyin;
import org.nlpcn.commons.lang.util.WordAlert;
import org.nlpcn.commons.lang.util.WordWeight;

/**
 * 
 * @author mengyao
 *
 */
public class WordUtil {

    public static void main(String[] args) {
        System.out.println("2016/06/25".matches("^\\d{4}(\\-|\\/|\\.)\\d{1,2}\\1\\d{1,2}$"));
        System.out.println("20160625".matches("^\\d{8}$"));
    }
    
    /**
     * 文章摘要
     * @param title
     * @param content
     * @return
     */
    public static String getSummary(String title, String content) {
        SummaryComputer summaryComputer = new SummaryComputer(title, content);
        Summary summary = summaryComputer.toSummary();
        return summary.getSummary();
    }

    /**
     * 带标题的文章关键词提取
     * @param title
     * @param content
     * @return
     */
    public static List<Keyword> getKeyWord(String title, String content) {
        List<Keyword> keyWords = new ArrayList<Keyword>();
        KeyWordComputer<NlpAnalysis> kwc = new KeyWordComputer<NlpAnalysis>(20);
        Collection<Keyword> result = kwc.computeArticleTfidf(title, content);
        for (Keyword keyword : result) {
            keyWords.add(keyword);
        }
        return keyWords;
    } 
    
    /**
     * 不带标题的文章关键词提取
     * @param content
     * @return
     */
    public static List<Keyword> getKeyWord2(String content) {
        List<Keyword> keyWords = new ArrayList<Keyword>();
        KeyWordComputer<NlpAnalysis> kwc = new KeyWordComputer<NlpAnalysis>(20);
        Collection<Keyword> result = kwc.computeArticleTfidf(content);
        for (Keyword keyword : result) {
            keyWords.add(keyword);
        }
        return keyWords;
    } 
    
    /**
     * 标准分词
     * @param text
     * @return
     */
    public static List<Term> getToSeg(String text) {
        List<Term> words = new ArrayList<Term>();
        Result parse = ToAnalysis.parse(text);
        for (Term term : parse) {
            if (null!=term.getName()&&!term.getName().trim().isEmpty()) {
                words.add(term);
            }
        }
        return words;
    }
    
    /**
     * NLP分词
     * @param text
     * @return
     */
    public static List<Term> getNlpSeg(String text) {
        List<Term> words = new ArrayList<Term>();
        Result parse = NlpAnalysis.parse(text);
        for (Term term : parse) {
            if (null!=term.getName()&&!term.getName().trim().isEmpty()) {
                words.add(term);
            }
        }
        return words;
    }
    
    /**
     * Index分词
     * @param text
     * @return
     */
    public static List<Term> getIndexSeg(String text) {
        List<Term> words = new ArrayList<Term>();
        Result parse = IndexAnalysis.parse(text);
        for (Term term : parse) {
            if (null!=term.getName()&&!term.getName().trim().isEmpty()) {
                words.add(term);
            }
        }
        return words;
    }
    
    /**
     * 简体转繁体
     * @param word
     * @return
     */
    public static String jian2fan(String text) {
        return JianFan.j2f(text);
    }
    
    /**
     * 繁体转简体
     * @param word
     * @return
     */
    public static String fan2jian(String text) {
        return JianFan.f2j(text);
    }
    
    /**
     * 拼音(不带音标)
     * @param word
     * @return
     */
    public static String pinyin(String text) {
        StringBuilder builder = new StringBuilder();
        List<String> pinyins = Pinyin.pinyin(text);
        for (String pinyin : pinyins) {
            if (null != pinyin) {
                builder.append(pinyin+" ");                
            }
        }
        return builder.toString();
    }
    
    /**
     * 拼音(不带音标,首字母大写)
     * @param word
     * @return
     */
    public static String pinyinUp(String text) {
        StringBuilder builder = new StringBuilder();
        List<String> pinyins = Pinyin.pinyin(text);
        for (String pinyin : pinyins) {
            if (StringUtils.isEmpty(pinyin)) {
                continue;
            }
            builder.append(pinyin.substring(0,1).toUpperCase()+pinyin.substring(1));
        }
        return builder.toString();
    }
    
    /**
     * 拼音(带数字音标)
     * @param word
     * @return
     */
    public static String tonePinyin(String text) {
        StringBuilder builder = new StringBuilder();
        List<String> pinyins = Pinyin.tonePinyin(text);
        for (String pinyin : pinyins) {
            if (null != pinyin) {
                builder.append(pinyin+" ");                
            }
        }
        return builder.toString();
    }
    
    /**
     * 拼音(带符号音标)
     * @param word
     * @return
     */
    public static String unicodePinyin(String text) {
        StringBuilder builder = new StringBuilder();
        List<String> pinyins = Pinyin.unicodePinyin(text);
        for (String pinyin : pinyins) {
            if (null != pinyin) {
                builder.append(pinyin+" ");                
            }
        }
        return builder.toString();
    }
    
    /**
     * 词频统计
     * @param words
     * @return
     */
    public static Map<String, Double> wordCount(List<String> words) {
        WordWeight ww = new WordWeight();
        for (String word : words) {
            ww.add(word);
        }
        return ww.export();
    }
    
    /**
     * 词频统计
     * @param words
     * @return
     */
    public static List<String> wordCount1(List<String> words) {
        List<String> wcs = new ArrayList<String>();
        WordWeight ww = new WordWeight();
        for (String word : words) {
            ww.add(word);
        }
        Map<String, Double> export = ww.export();
        for (Entry<String, Double> entry : export.entrySet()) {
            wcs.add(entry.getKey()+":"+entry.getValue());
        }
        return wcs;
    }
    
    /**
     * 语种识别:1英文;0中文
     * @param words
     * @return
     */
    public static int language(String word) {
        return WordAlert.isEnglish(word)?1:0;
    }
    
}

 

 类似资料: