两点间的距离为 depth[ u ] + depth[ v ] - 2 * depth[ lca ]
给的字符串可以看成dfs序, 对于x, y 下标, x < y, 他们的lca的肯定在x - y 之间并且dpeth最小。
问题转换成a[ x ] - 2 * a[ y ] + a[ z ]的最大值 x <= y <= z, 然后区间合并一下。
#include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 2e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 struct info { inline void setVal(int v) { ans = -inf; mx = mn = v; XY = YZ = -v; } inline void addVal(int v) { mx += v; mn += v; XY -= v; YZ -= v; } void print() { printf("ans: %d mx: %d mn: %d XY: %d YZ: %d\n", ans, mx, mn, XY, YZ); } int ans, mx, mn, XY, YZ; }; info operator + (const info& a, const info& b) { info c; c.ans = max(a.ans, b.ans); chkmax(c.ans, a.mx + b.YZ); chkmax(c.ans, a.XY + b.mx); c.mx = max(a.mx, b.mx); c.mn = min(a.mn, b.mn); c.XY = max(a.XY, b.XY); chkmax(c.XY, a.mx - 2 * b.mn); c.YZ = max(a.YZ, b.YZ); chkmax(c.YZ, b.mx - 2 * a.mn); return c; } info Tree[N << 2]; int lazy[N << 2]; inline void push(int rt) { if(lazy[rt]) { lazy[rt << 1] += lazy[rt]; Tree[rt << 1].addVal(lazy[rt]); lazy[rt << 1 | 1] += lazy[rt]; Tree[rt << 1 | 1].addVal(lazy[rt]); lazy[rt] = 0; } } void build(int *a, int l, int r, int rt) { if(l == r) { Tree[rt].setVal(a[l]); return; } int mid = l + r >> 1; build(a, lson); build(a, rson); Tree[rt] = Tree[rt << 1] + Tree[rt << 1 | 1]; } void update(int L, int R, int val, int l, int r, int rt) { if(R < l || r < L) return; if(L <= l && r <= R) { Tree[rt].addVal(val); lazy[rt] += val; return; } push(rt); int mid = l + r >> 1; update(L, R, val, lson); update(L, R, val, rson); Tree[rt] = Tree[rt << 1] + Tree[rt << 1 | 1]; } int n, q, a[N]; char s[N]; int main() { scanf("%d%d", &n, &q); n = (n - 1) * 2; scanf("%s", s + 1); for(int i = 1; i <= n; i++) a[i] = a[i - 1] + (s[i] == '(' ? 1 : -1); build(a, 1, n, 1); printf("%d\n", Tree[1].ans); while(q--) { int x, y; scanf("%d%d", &x, &y); update(x, n, s[x] == ')' ? 2 : -2, 1, n, 1); update(y, n, s[y] == ')' ? 2 : -2, 1, n, 1); swap(s[x], s[y]); printf("%d\n", Tree[1].ans); } return 0; } /* */