http://blog.csdn.net/hk_jh/article/details/8961449
主题 wxPython
pytesser是谷歌OCR开源项目的一个模块,在python中导入这个模块即可将图片中的文字转换成文本。
pytesser 调用了 tesseract。在python中调用pytesser模块,pytesser又用tesseract识别图片中的文字。
下面是整个过程的实现步骤:
1、首先要在code.google.com下载pytesser。 https://code.google.com/p/pytesser/downloads/detail?name=pytesser_v0.0.1.zip
这个是免安装的,可以放在python安装文件夹的\Lib\site-packages\ 下直接使用
pytesser里包含了tesseract.exe和英语的数据包(默认只识别英文),还有一些示例图片,所以解压缩后即可使用。
可通过以下代码测试:
>>> from pytesser import * >>> image = Image.open('fnord.tif') # Open image object using PIL >>> print image_to_string(image) # Run tesseract.exe on image fnord >>> print image_file_to_string('fnord.tif') fnord
from pytesser import * #im = Image.open('fnord.tif') #im = Image.open('phototest.tif') #im = Image.open('eurotext.tif') im = Image.open('fonts_test.png') text = image_to_string(im) print text
注:该模块需要PIL库的支持。
2、解决识别率低的问题
可以增强图片的显示效果,或者将其转换为黑白的,这样可以使其识别率提升不少:
enhancer = ImageEnhance.Contrast(image1) image2 = enhancer.enhance(4)
可以再对image2调用 image_to_string识别
3、识别其他语言
tesseract是一个命令行下运行的程序,参数如下:
tesseract imagename outbase [-l lang] [-psm N] [configfile...]
imagename是输入的image的名字
outbase是输出的文本的名字,默认为outbase.txt
-l lang 是定义要识别的的语言,默认为英文
详见 http://tesseract-ocr.googlecode.com/svn-history/r725/trunk/doc/tesseract.1.html
通过以下步骤可以识别其他语言:
(1)、下载其他语言数据包:
https://code.google.com/p/tesseract-ocr/downloads/list
将语言包放入pytesser的tessdata文件夹下
接下来修改pytesser.py的参数,下面是一个例子:
"""OCR in Python using the Tesseract engine from Google http://code.google.com/p/pytesser/ by Michael J.T. O'Kelly V 0.0.2, 5/26/08""" import Image import subprocess import os import StringIO import util import errors tesseract_exe_name = 'dlltest' # Name of executable to be called at command line scratch_image_name = "temp.bmp" # This file must be .bmp or other Tesseract-compatible format scratch_text_name_root = "temp" # Leave out the .txt extension _cleanup_scratch_flag = True # Temporary files cleaned up after OCR operation _language = "" # Tesseract uses English if language is not given _pagesegmode = "" # Tesseract uses fully automatic page segmentation if psm is not given (psm is available in v3.01) _working_dir = os.getcwd() def call_tesseract(input_filename, output_filename, language, pagesegmode): """Calls external tesseract.exe on input file (restrictions on types), outputting output_filename+'txt'""" current_dir = os.getcwd() error_stream = StringIO.StringIO() try: os.chdir(_working_dir) args = [tesseract_exe_name, input_filename, output_filename] if len(language) > 0: args.append("-l") args.append(language) if len(str(pagesegmode)) > 0: args.append("-psm") args.append(str(pagesegmode)) try: proc = subprocess.Popen(args) except (TypeError, AttributeError): proc = subprocess.Popen(args, shell=True) retcode = proc.wait() if retcode!=0: error_text = error_stream.getvalue() errors.check_for_errors(error_stream_text = error_text) finally: # Guarantee that we return to the original directory error_stream.close() os.chdir(current_dir) def image_to_string(im, lang = _language, psm = _pagesegmode, cleanup = _cleanup_scratch_flag): """Converts im to file, applies tesseract, and fetches resulting text. If cleanup=True, delete scratch files after operation.""" try: util.image_to_scratch(im, scratch_image_name) call_tesseract(scratch_image_name, scratch_text_name_root, lang, psm) result = util.retrieve_result(scratch_text_name_root) finally: if cleanup: util.perform_cleanup(scratch_image_name, scratch_text_name_root) return result def image_file_to_string(filename, lang = _language, psm = _pagesegmode, cleanup = _cleanup_scratch_flag, graceful_errors=True): """Applies tesseract to filename; or, if image is incompatible and graceful_errors=True, converts to compatible format and then applies tesseract. Fetches resulting text. If cleanup=True, delete scratch files after operation. Parameter lang specifies used language. If lang is empty, English is used. Page segmentation mode parameter psm is available in Tesseract 3.01. psm values are: 0 = Orientation and script detection (OSD) only. 1 = Automatic page segmentation with OSD. 2 = Automatic page segmentation, but no OSD, or OCR 3 = Fully automatic page segmentation, but no OSD. (Default) 4 = Assume a single column of text of variable sizes. 5 = Assume a single uniform block of vertically aligned text. 6 = Assume a single uniform block of text. 7 = Treat the image as a single text line. 8 = Treat the image as a single word. 9 = Treat the image as a single word in a circle. 10 = Treat the image as a single character.""" try: try: call_tesseract(filename, scratch_text_name_root, lang, psm) result = util.retrieve_result(scratch_text_name_root) except errors.Tesser_General_Exception: if graceful_errors: im = Image.open(filename) result = image_to_string(im, cleanup) else: raise finally: if cleanup: util.perform_cleanup(scratch_image_name, scratch_text_name_root) return result if __name__=='__main__': im = Image.open('phototest.tif') text = image_to_string(im, cleanup=False) print text text = image_to_string(im, psm=2, cleanup=False) print text try: text = image_file_to_string('fnord.tif', graceful_errors=False) except errors.Tesser_General_Exception, value: print "fnord.tif is incompatible filetype. Try graceful_errors=True" #print value text = image_file_to_string('fnord.tif', graceful_errors=True, cleanup=False) print "fnord.tif contents:", text text = image_file_to_string('fonts_test.png', graceful_errors=True) print text text = image_file_to_string('fonts_test.png', lang="eng", psm=4, graceful_errors=True) print text
这个是source里面提供的,其实若只要识别其他语言只要添加一个language参数就行了,下面是我的例子:
"""OCR in Python using the Tesseract engine from Google http://code.google.com/p/pytesser/ by Michael J.T. O'Kelly V 0.0.1, 3/10/07""" import Image import subprocess import util import errors tesseract_exe_name = 'tesseract' # Name of executable to be called at command line scratch_image_name = "temp.bmp" # This file must be .bmp or other Tesseract-compatible format scratch_text_name_root = "temp" # Leave out the .txt extension cleanup_scratch_flag = True # Temporary files cleaned up after OCR operation def call_tesseract(input_filename, output_filename, language): """Calls external tesseract.exe on input file (restrictions on types), outputting output_filename+'txt'""" args = [tesseract_exe_name, input_filename, output_filename, "-l", language] proc = subprocess.Popen(args) retcode = proc.wait() if retcode!=0: errors.check_for_errors() def image_to_string(im, cleanup = cleanup_scratch_flag, language = "eng"): """Converts im to file, applies tesseract, and fetches resulting text. If cleanup=True, delete scratch files after operation.""" try: util.image_to_scratch(im, scratch_image_name) call_tesseract(scratch_image_name, scratch_text_name_root,language) text = util.retrieve_text(scratch_text_name_root) finally: if cleanup: util.perform_cleanup(scratch_image_name, scratch_text_name_root) return text def image_file_to_string(filename, cleanup = cleanup_scratch_flag, graceful_errors=True, language = "eng"): """Applies tesseract to filename; or, if image is incompatible and graceful_errors=True, converts to compatible format and then applies tesseract. Fetches resulting text. If cleanup=True, delete scratch files after operation.""" try: try: call_tesseract(filename, scratch_text_name_root, language) text = util.retrieve_text(scratch_text_name_root) except errors.Tesser_General_Exception: if graceful_errors: im = Image.open(filename) text = image_to_string(im, cleanup) else: raise finally: if cleanup: util.perform_cleanup(scratch_image_name, scratch_text_name_root) return text if __name__=='__main__': im = Image.open('phototest.tif') text = image_to_string(im) print text try: text = image_file_to_string('fnord.tif', graceful_errors=False) except errors.Tesser_General_Exception, value: print "fnord.tif is incompatible filetype. Try graceful_errors=True" print value text = image_file_to_string('fnord.tif', graceful_errors=True) print "fnord.tif contents:", text text = image_file_to_string('fonts_test.png', graceful_errors=True) print text
在调用image_to_string函数时,只要加上相应的language参数就可以了,如简体中文最后一个参数即为 chi_sim, 繁体中文chi_tra,
也就是下载的语言包的 XXX.traineddata 文件的名字XXX,如下载的中文包是 chi_sim.traineddata, 参数就是chi_sim :
text = image_to_string(self.im, language = 'chi_sim')
至此,图片识别就完成了。
额外附加一句:有可能中文识别出来了,但是乱码,需要相应地将text转换为你所用的中文编码方式,如:
text.decode("utf8")就可以了