uber jvm profiler是用于在分布式监控收集jvm 相关指标,如:cpu/memory/io/gc信息等
确保安装了maven和JDK>=8前提下,直接mvn clean package
说明
直接以java agent的部署就可以使用
使用
java -javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 -cp target/jvm-profiler-1.0.0.jar
选项解释
参数 | 说明 |
---|---|
reporter | reporter类别, 此处直接默认为com.uber.profiling.reporters.KafkaOutputReporter就可以 |
brokerList | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则brokerList为kafka列表,以逗号分隔 |
topicPrefix | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则topicPrefix为kafka topic的前缀 |
tag | key为tag的metric,会输出到reporter中 |
metricInterval | metric report的频率,根据实际情况设置,单位为ms |
sampleInterval | jvm堆栈metrics report的频率,根据实际情况设置,单位为ms |
"nonHeapMemoryTotalUsed": 11890584.0,
"bufferPools": [
{
"totalCapacity": 0,
"name": "direct",
"count": 0,
"memoryUsed": 0
},
{
"totalCapacity": 0,
"name": "mapped",
"count": 0,
"memoryUsed": 0
}
],
"heapMemoryTotalUsed": 24330736.0,
"epochMillis": 1515627003374,
"nonHeapMemoryCommitted": 13565952.0,
"heapMemoryCommitted": 257425408.0,
"memoryPools": [
{
"peakUsageMax": 251658240,
"usageMax": 251658240,
"peakUsageUsed": 1194496,
"name": "Code Cache",
"peakUsageCommitted": 2555904,
"usageUsed": 1173504,
"type": "Non-heap memory",
"usageCommitted": 2555904
},
{
"peakUsageMax": -1,
"usageMax": -1,
"peakUsageUsed": 9622920,
"name": "Metaspace",
"peakUsageCommitted": 9830400,
"usageUsed": 9622920,
"type": "Non-heap memory",
"usageCommitted": 9830400
},
{
"peakUsageMax": 1073741824,
"usageMax": 1073741824,
"peakUsageUsed": 1094160,
"name": "Compressed Class Space",
"peakUsageCommitted": 1179648,
"usageUsed": 1094160,
"type": "Non-heap memory",
"usageCommitted": 1179648
},
{
"peakUsageMax": 1409286144,
"usageMax": 1409286144,
"peakUsageUsed": 24330736,
"name": "PS Eden Space",
"peakUsageCommitted": 67108864,
"usageUsed": 24330736,
"type": "Heap memory",
"usageCommitted": 67108864
},
{
"peakUsageMax": 11010048,
"usageMax": 11010048,
"peakUsageUsed": 0,
"name": "PS Survivor Space",
"peakUsageCommitted": 11010048,
"usageUsed": 0,
"type": "Heap memory",
"usageCommitted": 11010048
},
{
"peakUsageMax": 2863661056,
"usageMax": 2863661056,
"peakUsageUsed": 0,
"name": "PS Old Gen",
"peakUsageCommitted": 179306496,
"usageUsed": 0,
"type": "Heap memory",
"usageCommitted": 179306496
}
],
"processCpuLoad": 0.0008024004394748531,
"systemCpuLoad": 0.23138430784607697,
"processCpuTime": 496918000,
"appId": null,
"name": "24103@machine01",
"host": "machine01",
"processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
"tag": "mytag",
"gc": [
{
"collectionTime": 0,
"name": "PS Scavenge",
"collectionCount": 0
},
{
"collectionTime": 0,
"name": "PS MarkSweep",
"collectionCount": 0
}
]
}
说明
和java应用不同,需要把jvm-profiler.jar分发到各个节点上
使用
--jars hdfs:///public/libs/jvm-profiler-1.0.0.jar
--conf spark.driver.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0
--conf spark.executor.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0
选项解释
参数 | 说明 |
---|---|
reporter | reporter类别, 此处直接默认为com.uber.profiling.reporters.KafkaOutputReporter就可以 |
brokerList | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则brokerList为kafka列表,以逗号分隔 |
topicPrefix | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则topicPrefix为kafka topic的前缀 |
tag | key为tag的metric,会输出到reporter中 |
metricInterval | metric report的频率,根据实际情况设置,单位为ms |
sampleInterval | jvm堆栈metrics report的频率,根据实际情况设置,单位为ms |
"nonHeapMemoryTotalUsed": 11890584.0,
"bufferPools": [
{
"totalCapacity": 0,
"name": "direct",
"count": 0,
"memoryUsed": 0
},
{
"totalCapacity": 0,
"name": "mapped",
"count": 0,
"memoryUsed": 0
}
],
"heapMemoryTotalUsed": 24330736.0,
"epochMillis": 1515627003374,
"nonHeapMemoryCommitted": 13565952.0,
"heapMemoryCommitted": 257425408.0,
"memoryPools": [
{
"peakUsageMax": 251658240,
"usageMax": 251658240,
"peakUsageUsed": 1194496,
"name": "Code Cache",
"peakUsageCommitted": 2555904,
"usageUsed": 1173504,
"type": "Non-heap memory",
"usageCommitted": 2555904
},
{
"peakUsageMax": -1,
"usageMax": -1,
"peakUsageUsed": 9622920,
"name": "Metaspace",
"peakUsageCommitted": 9830400,
"usageUsed": 9622920,
"type": "Non-heap memory",
"usageCommitted": 9830400
},
{
"peakUsageMax": 1073741824,
"usageMax": 1073741824,
"peakUsageUsed": 1094160,
"name": "Compressed Class Space",
"peakUsageCommitted": 1179648,
"usageUsed": 1094160,
"type": "Non-heap memory",
"usageCommitted": 1179648
},
{
"peakUsageMax": 1409286144,
"usageMax": 1409286144,
"peakUsageUsed": 24330736,
"name": "PS Eden Space",
"peakUsageCommitted": 67108864,
"usageUsed": 24330736,
"type": "Heap memory",
"usageCommitted": 67108864
},
{
"peakUsageMax": 11010048,
"usageMax": 11010048,
"peakUsageUsed": 0,
"name": "PS Survivor Space",
"peakUsageCommitted": 11010048,
"usageUsed": 0,
"type": "Heap memory",
"usageCommitted": 11010048
},
{
"peakUsageMax": 2863661056,
"usageMax": 2863661056,
"peakUsageUsed": 0,
"name": "PS Old Gen",
"peakUsageCommitted": 179306496,
"usageUsed": 0,
"type": "Heap memory",
"usageCommitted": 179306496
}
],
"processCpuLoad": 0.0008024004394748531,
"systemCpuLoad": 0.23138430784607697,
"processCpuTime": 496918000,
"appId": null,
"name": "24103@machine01",
"host": "machine01",
"processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a",
"tag": "mytag",
"gc": [
{
"collectionTime": 0,
"name": "PS Scavenge",
"collectionCount": 0
},
{
"collectionTime": 0,
"name": "PS MarkSweep",
"collectionCount": 0
}
]
}
reporter | 说明 |
---|---|
ConsoleOutputReporter | 默认的repoter,一般用于调试 |
FileOutputReporter | 基于文件的reporter,分布式环境下不适用,得设置outputDir |
KafkaOutputReporter | 基于kafka的reporter,正式环境用的多,得设置brokerList,topicPrefix |
GraphiteOutputReporter | 基于Graphite的reporter,需设置graphite.host等配置 |
RedisOutputReporter | 基于redis的reporter,构建命令 mvn -P redis clean package |
InfluxDBOutputReporter | 基于InfluxDB的reporter,构建命令mvn -P influxdb clean package ,需设置influxdb.host等配置 |
建议在生产环境下使用KafkaOutputReporter,操作灵活性高,可以结合clickhouse grafana进行指标展示
源码分析
该jvm-profiler整体是基于java agent实现,项目pom文件 指定了MANIFEST.MF中的Premain-Class项和Agent-Class为com.uber.profiling.Agent
具体的实现类为AgentImpl
就具体的AgentImpl类的run方法来进行分析
public void run(Arguments arguments, Instrumentation instrumentation, Collection<AutoCloseable> objectsToCloseOnShutdown) {
if (arguments.isNoop()) {
logger.info("Agent noop is true, do not run anything");
return;
}
Reporter reporter = arguments.getReporter();
String processUuid = UUID.randomUUID().toString();
String appId = null;
String appIdVariable = arguments.getAppIdVariable();
if (appIdVariable != null && !appIdVariable.isEmpty()) {
appId = System.getenv(appIdVariable);
}
if (appId == null || appId.isEmpty()) {
appId = SparkUtils.probeAppId(arguments.getAppIdRegex());
}
if (!arguments.getDurationProfiling().isEmpty()
|| !arguments.getArgumentProfiling().isEmpty()) {
instrumentation.addTransformer(new JavaAgentFileTransformer(arguments.getDurationProfiling(), arguments.getArgumentProfiling()));
}
List<Profiler> profilers = createProfilers(reporter, arguments, processUuid, appId);
ProfilerGroup profilerGroup = startProfilers(profilers);
Thread shutdownHook = new Thread(new ShutdownHookRunner(profilerGroup.getPeriodicProfilers(), Arrays.asList(reporter), objectsToCloseOnShutdown));
Runtime.getRuntime().addShutdownHook(shutdownHook);
}