当前位置: 首页 > 工具软件 > hindex > 使用案例 >

【LeetCode】274. H-Index 解题报告(Python)

姬高澹
2023-12-01

作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址: https://leetcode.com/problems/h-index/description/

题目描述:

Given an array of citations (each citation is a non-negative integer) of a researcher, write a function to compute the researcher’s h-index.

According to the definition of h-index on Wikipedia: “A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each.”

Example:

Input: citations = [3,0,6,1,5]
Output: 3 
Explanation: [3,0,6,1,5] means the researcher has 5 papers in total and each of them had 
             received 3, 0, 6, 1, 5 citations respectively. 
             Since the researcher has 3 papers with at least 3 citations each and the remaining 
             two with no more than 3 citations each, her h-index is 3.

Note: If there are several possible values for h, the maximum one is taken as the h-index.

题目大意

计算某个研究人员的影响因子。影响因子的计算方式是有h篇影响力至少为h的论文。影响因子是衡量作者生产力和影响力的方式,判断了他又多少篇影响力很大的论文。

解题方法

方法一:排序+遍历

刚开始读不懂题,现在解释一下样例:[3,0,6,1,5],当h=0时表示至少有0篇影响力为0的论文;当h=1时表示至少有1篇影响力为1的论文;当h=3时表示至少有3篇影响力为3的论文;当h=5时表示至少有5篇影响力为5的论文;当h=6时表示至少有6篇影响力为6的论文.显然符合要求的是只要有3篇影响力为3的论文。

有多少篇影响力大于x的论文怎么求呢?显然可以使用排序的方法,计算一下排序之后索引x后面有多少篇论文即可。我们求的结果就是求影响力x和不小于该影响力的论文个数的最小值,然后再求这个最小值的最大值。

时间复杂度是O(NlogN + N),空间复杂度是O(N)。

class Solution(object):
    def hIndex(self, citations):
        """
        :type citations: List[int]
        :rtype: int
        """
        N = len(citations)
        citations.sort()
        h = 0
        for i, c in enumerate(citations):
            h = max(h, min(N - i, c))
        return h

方法二:排序+二分

这个题是275. H-Index II打乱了顺序的版本,也可以使用先排序,再二分的方法。这个做法打败了100%的提交。

class Solution(object):
    def hIndex(self, citations):
        """
        :type citations: List[int]
        :rtype: int
        """
        N = len(citations)
        citations.sort()
        l, r = 0, N - 1
        H = 0
        while l <= r:
            mid = l + (r - l) / 2
            H = max(H, min(citations[mid], N - mid))
            if citations[mid] < N - mid:
                l = mid + 1
            else:
                r = mid - 1
        return H

时间复杂度是O(NlogN + logN),空间复杂度是O(N)。

参考资料:

https://blog.csdn.net/happyaaaaaaaaaaa/article/details/51593843

日期

2018 年 10 月 6 日 —— 努力看书

 类似资料: