关于svm算法,这个在我关于机器学习的博客中已经描述的比较详实了,这里就不再赘述。svm主要有三种类型,这里我所介绍的是线性svm算法的代码。相较于使用核函数的svm算法,代码的整体框架应该是一样的,只是在对偶问题的求解上所使用的方法可能是不一样的。
这个类所表示的是算法的决策平面,是一个多分类的线性分类模型。定义在<include/shark/Models/LinearClassifier.h>
中。
template<class VectorType = RealVector>
class LinearClassifier : public ArgMaxConverter<LinearModel<VectorType> >
{
public:
LinearClassifier(){}
std::string name() const
{ return "LinearClassifier"; }
};
相当简单的一个类,并没有什么好说明的地方。
该类是LinearClassifier的基类,其作用是将一个输出的向量通过arg_max操作转变为一个类标记,就是输出分量最大的那一维。该类定义在<include/shark/Models/Converter.h>
。
template<class Model>
class ArgMaxConverter : public AbstractModel<typename Model::InputType, unsigned int>
{
private:
typedef typename Model::BatchOutputType ModelBatchOutputType;
public:
typedef typename Model::InputType InputType;
typedef unsigned int OutputType;
typedef typename Batch<InputType>::type BatchInputType;
typedef Batch<unsigned int>::type BatchOutputType;
ArgMaxConverter()
{ }
ArgMaxConverter(Model const& decisionFunction)
: m_decisionFunction(decisionFunction)
{ }
std::string name() const
{ return "ArgMaxConverter<"+m_decisionFunction.name()+">"; }
RealVector parameterVector() const{
return m_decisionFunction.parameterVector();
}
void setParameterVector(RealVector const& newParameters){
m_decisionFunction.setParameterVector(newParameters);
}
std::size_t numberOfParameters() const{
return m_decisionFunction.numberOfParameters();
}
Model const& decisionFunction()const{
return m_decisionFunction;
}
Model& decisionFunction(){
return m_decisionFunction;
}
// 计算输入数据的类标签
void eval(BatchInputType const& input, BatchOutputType& output)const{
ModelBatchOutputType modelResult;
m_decisionFunction.eval(input,modelResult);
std::size_t batchSize = shark::size(modelResult);
output.resize(batchSize);
if(modelResult.size2()== 1) //对于二分类的情况
{
for(std::size_t i = 0; i != batchSize; ++i){// 如果输出大于0表示正类,否则为负类
output(i) = modelResult(i,0) > 0.0;
}
}
else{
for(std::size_t i = 0; i != batchSize; ++i){
output(i) = static_cast<unsigned int>(arg_max(row(modelResult,i)));
}
}
}
void eval(BatchInputType const& input, BatchOutputType& output, State& state)const{
eval(input,output);
}
void eval(InputType const & pattern, OutputType& output)const{
typename Model::OutputType modelResult;
m_decisionFunction.eval(pattern,modelResult);
if(modelResult.size()== 1){
output = modelResult(0) > 0.0;
}
else{
output = static_cast<unsigned int>(arg_max(modelResult));
}
}
void read(InArchive& archive){
archive >> m_decisionFunction;
}
void write(OutArchive& archive) const{
archive << m_decisionFunction;
}
private:
Model m_decisionFunction;
};
在LinearClassifier类的代码中,该模板类的模板参数是LinearModel,这个模板类我们之前已经介绍过了。
这个类是所有线性svm训练方法的基类。该类定义在<include/shark/Algorithms/Trainers/AbstractSvmTrainer.h>
中。
template <class InputType>
class AbstractLinearSvmTrainer
: public AbstractTrainer<LinearClassifier<InputType>, unsigned int>
, public QpConfig
, public IParameterizable
{
public:
typedef AbstractTrainer<LinearClassifier<InputType>, unsigned int> base_type;
typedef LinearClassifier<InputType> ModelType;
AbstractLinearSvmTrainer(double C, bool unconstrained = false)
: m_C(C)
, m_unconstrained(unconstrained)
{ RANGE_CHECK( C > 0 ); }
double C() const
{ return m_C; }
void setC(double C) {
RANGE_CHECK( C > 0 );
m_C = C;
}
bool isUnconstrained() const
{ return m_unconstrained; }
RealVector parameterVector() const
{
RealVector ret(1);
ret(0) = (m_unconstrained ? std::log(m_C) : m_C);
return ret;
}
void setParameterVector(RealVector const& newParameters)
{
SHARK_ASSERT(newParameters.size() == 1);
setC(m_unconstrained ? std::exp(newParameters(0)) : newParameters(0));
}
size_t numberOfParameters() const
{ return 1; }
// 对于以下的两个类成员,在QpConfig的构造函数中没有为它们赋值。稍后可以看到,它们自己的构造函数中是有默认值的
using QpConfig::m_stoppingcondition; // 算法训练的停止条件
using QpConfig::m_solutionproperties; // 当前解的一些性质
using QpConfig::m_verbosity; // 冗长程度(字面翻译,在后面的代码中体现的不是这个意思),默认值是0,
protected:
double m_C; // 目标函数中正则化项的系数
bool m_unconstrained; // 是否使用log C 代替了C,如果是的话则摆脱了C > 0的限制,并不知道这个有什么用
};
这三个类都定义在<include/shark/Algorithms/QP/QuadraticProgram.h>
中。
struct QpStoppingCondition
{
QpStoppingCondition(double accuracy = 0.001, unsigned long long iterations = 0xffffffff, double value = 1e100, double seconds = 1e100)
{
minAccuracy = accuracy;
maxIterations = iterations;
targetValue = value;
maxSeconds = seconds;
}
//违反KKT条件的阈值下限
double minAccuracy;
//最大迭代次数
unsigned long long maxIterations;
//目标函数值的阈值
double targetValue;
//算法运行的最长时间
double maxSeconds;
};
enum QpStopType
{
QpNone = 0,
QpAccuracyReached = 1,
QpMaxIterationsReached = 4,
QpTimeout = 8,
};
struct QpSolutionProperties
{
QpSolutionProperties()
{
type = QpNone;
accuracy = 1e100;
iterations = 0;
value = 1e100;
seconds = 0.0;
}
QpStopType type;
double accuracy; //当前解违反KKT条件的程度
unsigned long long iterations; //当前循环的次数
double value; // 当前目标函数的值
double seconds; // 当前程序的运行时间
};
该类就是用于训练线性SVM的,定义在<include/shark/Algorithms/Trainers/CSvmTrainer.h>
。
template <class InputType>
class LinearCSvmTrainer : public AbstractLinearSvmTrainer<InputType>
{
public:
typedef AbstractLinearSvmTrainer<InputType> base_type;
LinearCSvmTrainer(double C, bool unconstrained = false)
: AbstractLinearSvmTrainer<InputType>(C, unconstrained){}
std::string name() const
{ return "LinearCSvmTrainer"; }
void train(LinearClassifier<InputType>& model, LabeledData<InputType, unsigned int> const& dataset)
{
std::size_t dim = inputDimension(dataset);
QpBoxLinear<InputType> solver(dataset, dim);
RealMatrix w(1, dim, 0.0);
row(w, 0) = solver.solve(
base_type::C(),
0.0,
QpConfig::stoppingCondition(),
&QpConfig::solutionProperties(),
QpConfig::verbosity() > 0);
model.decisionFunction().setStructure(w);
}
};
从代码中可以看出,主要还是调用QpBoxLinear类的solve方法来求解。
该类是利用矩阵分解的方法来求解目标函数是hinge损失函数的线性svm,定义在<include/shark/Algorithms/QP/QpBoxLinear.h>
。光看代码你可能会不清楚一些操作的具体含义,需要看一下”A Dual Coordinate Descent Method for Large-scale Linear SVM”这篇论文。
template <class InputT>
class QpBoxLinear
{
public:
typedef LabeledData<InputT, unsigned int> DatasetType;
typedef typename LabeledData<InputT, unsigned int>::const_element_reference ElementType;
QpBoxLinear(const DatasetType& dataset, std::size_t dim)
: m_data(dataset)
, m_xSquared(m_data.size())
, m_dim(dim)
{
SHARK_ASSERT(dim > 0);
for (std::size_t i=0; i<m_data.size(); i++)
{
ElementType x_i = m_data[i];
m_xSquared(i) = inner_prod(x_i.input, x_i.input);
}
}
// 参数reg相当于论文中的D_{ii}
RealVector solve(
double bound,
double reg,
QpStoppingCondition& stop,
QpSolutionProperties* prop = NULL,
bool verbose = false)
{
SHARK_ASSERT(bound > 0.0);
SHARK_ASSERT(reg >= 0.0);
Timer timer;
timer.start();
std::size_t ell = m_data.size();
RealVector alpha(ell, 0.0); // 表示拉格朗日乘子
RealVector w(m_dim, 0.0); // 权值向量
RealVector pref(ell, 1.0); // measure of success of individual steps
double prefsum = ell; // normalization constant
std::vector<std::size_t> schedule(ell); // 更新每一个拉格朗日乘子的顺序
// prepare counters
std::size_t epoch = 0;
std::size_t steps = 0;
// prepare performance monitoring for self-adaptation
double max_violation = 0.0;
const double gain_learning_rate = 1.0 / ell;
double average_gain = 0.0;
bool canstop = true;
// outer optimization loop
while (true)
{
// 计算更新的下标顺序,至于这种算法的原理我就不是很清楚了,论文里也没有说明
double psum = prefsum;
prefsum = 0.0;
std::size_t pos = 0;
for (std::size_t i=0; i<ell; i++)
{
double p = pref[i];
double num = (psum < 1e-6) ? ell - pos : std::min((double)(ell - pos), (ell - pos) * p / psum);
std::size_t n = (std::size_t)std::floor(num);
double prob = num - n;
if (Rng::uni() < prob) n++;
for (std::size_t j=0; j<n; j++)
{
schedule[pos] = i;
pos++;
}
psum -= p;
prefsum += p;
}
SHARK_ASSERT(pos == ell);
for (std::size_t i=0; i<ell; i++) std::swap(schedule[i], schedule[Rng::discrete(0, ell - 1)]);
// inner loop
// 算法的符号与论文中是相反的,包括g,pg和new_a的计算
max_violation = 0.0;
for (std::size_t j=0; j<ell; j++)
{
// active variable
std::size_t i = schedule[j];
ElementType e_i = m_data[i];
double y_i = (e_i.label > 0) ? +1.0 : -1.0;
// compute gradient and projected gradient
double a = alpha(i);
double wyx = y_i * inner_prod(w, e_i.input);
double g = 1.0 - wyx - reg * a;
double pg = (a == 0.0 && g < 0.0) ? 0.0 : (a == bound && g > 0.0 ? 0.0 : g);
// update maximal KKT violation over the epoch
max_violation = std::max(max_violation, std::abs(pg));
double gain = 0.0;
// 更新参数的过程
if (pg != 0.0)
{
// SMO-style coordinate descent step
double q = m_xSquared(i) + reg;
double mu = g / q; // 该参数同时也表示了a的两次更新之间的差值
double new_a = a + mu;
// numerically stable update
if (new_a <= 0.0)
{
mu = -a;
new_a = 0.0;
}
else if (new_a >= bound)
{
mu = bound - a;
new_a = bound;
}
// 更新参数
alpha(i) = new_a;
w += (mu * y_i) * e_i.input;
gain = mu * (g - 0.5 * q * mu);
steps++;
}
// update gain-based preferences
{
if (epoch == 0) average_gain += gain / (double)ell;
else
{
double change = CHANGE_RATE * (gain / average_gain - 1.0);
double newpref = std::min(PREF_MAX, std::max(PREF_MIN, pref(i) * std::exp(change)));
prefsum += newpref - pref(i);
pref[i] = newpref;
average_gain = (1.0 - gain_learning_rate) * average_gain + gain_learning_rate * gain;
}
}
}
epoch++;
if (stop.maxIterations > 0 && ell * epoch >= stop.maxIterations) //这里的最大循环次数指的是内部循环的次数
{
if (prop != NULL) prop->type = QpMaxIterationsReached;
break;
}
if (timer.stop() >= stop.maxSeconds)
{
if (prop != NULL) prop->type = QpTimeout;
break;
}
if (max_violation < stop.minAccuracy)
{
if (verbose) std::cout << "#" << std::flush;
if (canstop)
{
if (prop != NULL) prop->type = QpAccuracyReached;
break;
}
else
{
// prepare full sweep for a reliable checking of the stopping criterion
canstop = true;
for (std::size_t i=0; i<ell; i++) pref[i] = 1.0;
prefsum = ell;
}
}
else
{
if (verbose) std::cout << "." << std::flush;
canstop = false;
}
}
timer.stop();
// compute solution statistics
std::size_t free_SV = 0; // 不在决策边界上的支持向量个数
std::size_t bounded_SV = 0; // 在决策边界上的支持向量的个数
double objective = -0.5 * shark::blas::inner_prod(w, w); //计算最终的目标函数值,但计算的值有些诡异,既不是原问题的目标值也不是对偶问题的目标值
for (std::size_t i=0; i<ell; i++)
{
double a = alpha(i);
if (a > 0.0)
{
objective += a;
objective -= reg/2.0 * a * a;
if (a == bound) bounded_SV++;
else free_SV++;
}
}
// return solution statistics
if (prop != NULL)
{
prop->accuracy = max_violation; // this is approximate, but a good guess
prop->iterations = ell * epoch;
prop->value = objective;
prop->seconds = timer.lastLap();
}
// output solution statistics
// 这里verbose只是一个是否需要输出信息的标志
if (verbose)
{
std::cout << std::endl;
std::cout << "training time (seconds): " << timer.lastLap() << std::endl;
std::cout << "number of epochs: " << epoch << std::endl;
std::cout << "number of iterations: " << (ell * epoch) << std::endl;
std::cout << "number of non-zero steps: " << steps << std::endl;
std::cout << "dual accuracy: " << max_violation << std::endl;
std::cout << "dual objective value: " << objective << std::endl;
std::cout << "number of free support vectors: " << free_SV << std::endl;
std::cout << "number of bounded support vectors: " << bounded_SV << std::endl;
}
// return the solution
return w;
}
protected:
DataView<const DatasetType> m_data; // 训练数据
RealVector m_xSquared; //m_data^T m_data
std::size_t m_dim; // 输入数据的维度
};
由于线性svm只是针对于二分类问题(当然所有的svm都是这样),如果要对多分类问题建立分类器,则需要使用LinearMcSvmOVATrainer类来训练。