NVIDIA-docker Cheatsheet

周伟泽
2023-12-01

TensorFlow Docker requirements

  1. Install Docker on your local host machine.
  2. For GPU support on Linux, install nvidia-docker.

Note: To run the docker command without sudo, create the docker group and add your user. For details, see the post-installation steps for Linux.

Download a TensorFlow Docker image

The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:

TagDescription
latestThe latest release of TensorFlow CPU binary image. Default.
nightlyNightly builds of the TensorFlow image. (unstable)
versionSpecify the version of the TensorFlow binary image, for example: 1.14.0
develNightly builds of a TensorFlow master development environment. Includes TensorFlow source code.

Each base tag has variants that add or change functionality:

Tag VariantsDescription
tag-gpuThe specified tag release with GPU support. (See below)
tag-py3The specified tag release with Python 3 support.
tag-jupyterThe specified tag release with Jupyter (includes TensorFlow tutorial notebooks)

You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:

docker pull tensorflow/tensorflow                     # latest stable release
docker pull tensorflow/tensorflow:devel-gpu           # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter  # latest release w/ GPU support and Jupyter
 

Start a TensorFlow Docker container

To start a TensorFlow-configured container, use the following command form:

docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
 

For details, see the docker run reference.

Examples using CPU-only images

Let's verify the TensorFlow installation using the latest tagged image. Docker downloads a new TensorFlow image the first time it is run:

docker run -it --rm tensorflow/tensorflow \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

Success: TensorFlow is now installed. Read the tutorials to get started.

Let's demonstrate some more TensorFlow Docker recipes. Start a bash shell session within a TensorFlow-configured container:

docker run -it tensorflow/tensorflow bash
 

Within the container, you can start a python session and import TensorFlow.

To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir):

docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
 

Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.

Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:

docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
 

Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...

GPU support

Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).

Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker is only available for Linux, see their platform support FAQ for details.

Check if a GPU is available:

lspci | grep -i nvidia
 

Verify your nvidia-docker installation:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
 

Note: nvidia-docker v1 uses the nvidia-docker alias, where v2 uses docker --runtime=nvidia.

Examples using GPU-enabled images

Download and run a GPU-enabled TensorFlow image (may take a few minutes):

docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker execto reuse a container.

Use the latest TensorFlow GPU image to start a bash shell session in the container:

docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
 

转载于:https://www.cnblogs.com/sddai/p/11116349.html

 类似资料: