当前位置: 首页 > 工具软件 > NLP-progress > 使用案例 >

自然语言处理-核心部分RNN

王鹏飞
2023-12-01

RNN百度百科

  • 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)。
  • 对循环神经网络的研究始于二十世纪80-90年代,并在二十一世纪初发展为深度学习(deep learning)算法之一,其中双向循环神经网络(Bidirectional RNN, Bi-RNN)和长短期记忆网络(Long Short-Term Memory networks,LSTM)是常见的循环神经网络。
  • 循环神经网络具有记忆性、参数共享并且图灵完备(Turing completeness),因此在对序列的非线性特征进行学习时具有一定优势。循环神经网络在自然语言处理(Natural Language Processing, NLP),例如语音识别、语言建模、机器翻译等领域有应用,也被用于各类时间序列预报。引入了卷积神经网络(Convoutional Neural Network, CNN)构筑的循环神经网络可以处理包含序列输入的计算机视觉问题。

学习目标:

了解RNN在自然语言处理中的使用


代码:

import numpy as np

data = open('data/Hatty_Potter.txt', 'r').read()
# data = open('data/希腊神话故事.txt', 'r').read()

chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print('data has %d chars, %d unique' % (data_size, vocab_size))

char_to_ix = {ch: i for i, ch in enumerate(chars)}
ix_to_char = {i: ch for i, ch in enumerate(chars)}

print(char_to_ix)

# 超参数
hidden_size = 100
seq_leghth = 25
learning_rate = 0.001  # 学习率越小,学习时间越小

Wxh = np.random.randn(hidden_size, vocab_size) * 0.01  # input to hidden
Whh = np.random.randn(hidden_size, hidden_size) * 0.01  # hidden to hidden
Why = np.random.randn(vocab_size, hidden_size) * 0.01  # input to output
bh = np.zeros((hidden_size, 1))
by = np.zeros((vocab_size, 1))


# print('Wxh', Wxh)
# print('Whh', Whh)
# print('Why', Why)
# print('bh', bh)
# print('by', by)


def lossFunc(inputs, targets, hprev):
    """
    loss function
    :param input: list of integers
    :param targets: list of integers
    :param hprev: hprev is Hx1 array of initial hidden state
    :return: return the loss, gradients on model parameters, and last hidden state
    """

    xs, hs, ys, ps = {}, {}, {}, {}  # xs:每一个文字的向量,ps:预测下一个文字,hs:隐藏层的传递,ys:输出结果
    hs[-1] = np.copy(hprev)
    loss = 0  # 整体损失
    for t in range(len(inputs)):
        xs[t] = np.zeros((vocab_size, 1))  # encode in 1-of-k representation (we place a 0 vector as the t-th input)
        xs[t][inputs[t]] = 1  # inside that t-th input we use the integer in "input" list to set the correct
        hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t - 1]) + bh)  # hidden state
        ys[t] = np.dot(Why, hs[t]) + by  # unnormallized log probabilities for next chars
        ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))  # probabilities for the next chars
        loss += -np.log(ps[t][targets[t], 0])  # softmax (cross-entropy loss)

    dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
    dbh, dby = np.zeros_like(bh), np.exp(ys[t])  # probabilities for next chars
    dhnest = np.zeros_like(hs[0])
    for t in reversed(range(len(inputs))):
        dy = np.copy(ps[t])

        dy[targets[t]] -= 1  # backprop into y
        dWhy += np.dot(dy, hs[t].T)
        dby += dy

        dh = np.dot(Why.T, dy) + dhnest  # backprop into p
        dhraw = (1 - hs[t] * hs[t]) * dh  # backprop throuth tanh nonlinearity
        dbh += dhraw  # derivative of hidden bias
        dWxh += np.dot(dhraw, xs[t].T)  # derivative of input to hidden layer weight
        dWhh += np.dot(dhraw, hs[t - 1].T)  # derivative of hidden to hidden layer weight
        dhnext = np.dot(Whh.T, dhraw)

    for dparam in [dWxh, dWhh, dWhy, dbh, dby]:
        np.clip(dparam, -5, 5, out=dparam)  # 剪切以缓和爆炸的梯度

    return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs) - 1]


# prediction, one full forword pass
def sample(h, seed_ix, n):
    # create vector

    x = np.zeros((vocab_size, 1))
    # customize it for our seed char
    x[seed_ix] = 1
    # list to store generated chars
    ixes = []
    # for as many charaters as we want to generate
    for t in range(n):
        h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
        y = np.dot(Why, h) + by
        p = np.exp(y) / np.sum(np.exp(y))
        ix = np.random.choice(range(vocab_size), p=p.ravel())
        x = np.zeros((vocab_size, 1))
        x[ix] = 1

        ixes.append(ix)

    txt = ''.join(ix_to_char[ix] for ix in ixes)
    print('-----\n %s \n------' % (txt,))


n, p = 0, 0
mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by)  # memory variables for Adagrad
smooth_loss = -np.log(1.0 / vocab_size) * seq_leghth  # loss at iteration O
while n <= 1000 * 100:
    if p + seq_leghth + 1 >= len(data) or n == 0:
        hprev = np.zeros((hidden_size, 1))  # reset RNN memory
        p = 0  # go from start of data
    inputs = [char_to_ix[ch] for ch in data[p:p + seq_leghth]]
    targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_leghth + 1]]

    loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFunc(inputs, targets, hprev)
    smooth_loss = smooth_loss * 0.999 + loss * 0.001

    # sample from the model now and then
    if n % 1000 == 0:
        print('iter %d, loss: %d' % (n, smooth_loss))  # print progress
        sample(hprev, inputs[0], 200)

    # perform parameter update with Adagrad
    for param, dparam, men in zip([Wxh, Whh, Why, bh, by],
                                  [dWxh, dWhh, dWhy, dbh, dby],
                                  [mWxh, mWhh, mWhy, mbh, mby]):
        men += dparam * dparam
        param += -learning_rate * dparam / np.sqrt(men + 1e-8)  # adagrad update

    p += seq_leghth  # move data pointer
    n += 1  # iteration counter

 类似资料: