数据特征分析与预处理
顺丰-大数据挖掘与分析(2021秋招) 顺丰一面: 1.深挖实习,指标体系如何建立,各项指标的权重如何确定 2.逻辑回归算法的原理 3.谈谈对ABtest的认识 4.sql排序窗口函数的区别 顺丰二面: 1.深挖实习,预测为什么选用随机森林算法,如何调参 2.论文项目,简单介绍 3.了解哪些机器学习算法 4.反问 顺丰hr面 1.实习中遇到的困难,如何解决 2.过往经历中,你认为最困难的问题,你是
本文向大家介绍深入分析python数据挖掘 Json结构分析,包括了深入分析python数据挖掘 Json结构分析的使用技巧和注意事项,需要的朋友参考一下 json是一种轻量级的数据交换格式,也可以说是一种配置文件的格式 这种格式的文件是我们在数据处理经常会遇到的 python提供内置的模块json,只需要在使用前导入即可 你可以通过帮助函数查看json的帮助文档 json常用的方法有load
数据挖掘 18 大算法实现以及其他相关经典 DM 算法,BIRCH 算法本身上属于一种聚类算法,不过他克服了一些 K-Means 算法的缺点。
一位挖掘专家 tom khabaza 提出了挖掘九律,挺好的东西,特别是九这个数字,深得中华文化精髓,有点独孤九剑的意思: 第一,目标律。 数据挖掘是一个业务过程,必须得有业务目标。无目的,无过程。 第二,知识律。 业务知识贯穿在挖掘这个业务过程的各环节。 第三,准备律。 数据获取、数据准备等数据处理耗时占整个挖掘过程的一半。 第四,NFL律。 NFL,没有免费的午餐。没有一个固定的算法适用所有的
提问: 自我介绍 介绍一下你简历上的项目? 除了这个还做过其他的项目吗? 有没有参加过建模比赛? 对机器学习有了解吗? 总结: 面试官看起来是人事部门的,不像是技术人员,都没怎么问技术,很快就结束了。 心态上凑合,没上次那么紧张了。 老毛病又犯了呀我真的,跟对面那姐姐聊的太诚实了,机器学习那里我跟人说没怎么用过,回想起来就应该说一直有学习,也了解过,我真的悔死。虽然我也说了几种有监督和无监督的算法
字节跳动 (1h) 1.自我面试 2.挑一个你认为比较成功的项目进行介绍? 3.介绍你做过的特征工程 4.你都有过哪些算法?介绍下随机森林、XGB、GBDT的差异 5.对模型进行评估时候选取的方法 携程控股(45min) 1.自我介绍 2.选择一个项目进行介绍 3.你建模的时候都用到哪些方法 4.项目细节 5.模型评估 腾讯科技(1个小时) 1.自我介绍 2.直接问项目 3.解释下随机森林和GBD
硕士研究cv 可能和数据挖掘不是那么匹配~ 大华一面(1h): 1、增量学习的科研项目(问了具体的细节 以及为什么) 2、语义分割的发展 3、UNet中的跳跃连接的作用 4、残差网络的shortcut连接的作用,数学方面证明残差网络可以避免梯度消失,并且问了一个关于残差网络的改进问题(面试官看最新的论文看到的,我没有理解他所说的问题) 5、宫颈肿瘤分割和pcr预测的项目(细节也问的很详细) 6、预
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。