当前位置: 首页 > 工具软件 > Spark IM > 使用案例 >

大数据系列 | Spark安装与配置

步炯
2023-12-01

1. Standalone模式

​ Standalone模式是Spark自带的资源调动引擎,构建一个由Master + Slave构成的Spark集群,Spark运行在集群中。
​ 这个要和Hadoop中的Standalone区别开来。这里的Standalone是指只用Spark来搭建一个集群,不需要借助其他的框架。是相对于Yarn和Mesos来说的。

1. 解压一份Spark安装包,并修改解压后的文件夹名称为spark-standalone

[root@bigdata1 software]# tar -zxvf spark-3.0.3-bin-hadoop3.2.tgz -C /opt/module/
[root@bigdata1 module]# mv spark-3.0.3-bin-hadoop3.2/ spark-standalone

2. 配置集群节点

[root@bigdata1 conf]# mv slaves.template slaves
[root@bigdata1 conf]# vim slaves
bigdata1
bigdata2
bigdata3

3. 修改spark-env.sh文件,添加master节点

[root@bigdata1 conf] mv spark-env.sh.template spark-env.sh
[root@bigdata1 conf] vim spark-env.sh
SPARK_MASTER_HOST=bigdata1
SPARK_MASTER_PORT=7077

4. 向其他机器分发spark-standalone包

在其他机器创建spark-standalone目录。
[root@bigdata1 spark-standalone]# scp -r /opt/module/spark-standalone/ bigdata2:/opt/module
[root@bigdata1 spark-standalone]# scp -r /opt/module/spark-standalone/ bigdata3:/opt/module

5. 启动spark集群 (注意执行路径)

[root@bigdata1 spark-standalone] sbin/start-all.sh
starting org.apache.spark.deploy.master.Master, logging to /opt/module/spark-standalone/logs/spark-root-org.apache.spark.deploy.master.Master-1-bigdata1.out
bigdata1: starting org.apache.spark.deploy.worker.Worker, logging to /opt/module/spark-standalone/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bigdata1.out
bigdata3: starting org.apache.spark.deploy.worker.Worker, logging to /opt/module/spark-standalone/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bigdata3.out
bigdata2: starting org.apache.spark.deploy.worker.Worker, logging to /opt/module/spark-standalone/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bigdata2.out

#jps 检查是否有master(bigdata1)和woker(bigdata1、bigdata2、bigdata3)

6.官方求PI案例

[root@bigdata1 spark-standalone] bin/spark-submit \
> --class org.apache.spark.examples.SparkPi \
> --master spark://bigdata1:7077 \
> ./examples/jars/spark-examples_2.12-3.0.3.jar \
> 10


结果:(值不唯一,有值即可)
Pi is roughly 3.1408591408591406


bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://bigdata1:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
./examples/jars/spark-examples_2.12-3.0.3.jar \
10

结果:
Pi is roughly 3.1415351415351416


------------------------------ 命令 ---------------------------------------
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://bigdata1:7077 \
--executor-memory 2G \
--total-executor-cores 2 \
./examples/jars/spark-examples_2.12-3.0.3.jar \
10

2. Yarn模式

spark客户端连接Yarn,不需要额外构建集群。

1. 停止Standalone模式下的spark集群 (注意执行路径)

[root@bigdata1 spark-standalone]# sbin/stop-all.sh

2. 再单独解压一份spark用来做Spark on Yarn 模式

[root@bigdata1 software]# tar -zxvf spark-3.0.3-bin-hadoop3.2.tgz -C /opt/module/
[root@bigdata1 module]# mv spark-3.0.3-bin-hadoop3.2/ spark-yarn

3. 配置环境变量

#SPARK_HOME
export SPARK_HOME=/opt/module/spark-yarn
export PATH=$PATH:$SPARK_HOME/bin

4. 修改配置(修改hadoop配置文件/opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml)

#当机器内存较少时,防止执行过程进行被意外杀死,可以做如下配置:
#修改hadoop配置文件/opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml,添加如下内容
<property>
     <name>yarn.nodemanager.pmem-check-enabled</name>
     <value>false</value>
</property>

<property>
     <name>yarn.nodemanager.vmem-check-enabled</name>
     <value>false</value>
</property>

5. 分发配置文件

[root@bigdata1 hadoop] scp -r /opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml bigdata2:/opt/module/hadoop-3.1.3/etc/hadoop

[root@bigdata1 hadoop] scp -r /opt/module/hadoop-3.1.3/etc/hadoop/yarn-site.xml bigdata3:/opt/module/hadoop-3.1.3/etc/hadoop

6. 修改spark-env.sh

[root@bigdata1 conf] mv spark-env.sh.template spark-env.sh
[root@bigdata1 conf] vim spark-env.sh
YARN_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop

7. 重启Hadoop

start-dfs.sh
start-yarn.sh 

8. 求PI值

spark-submit \
> --class org.apache.spark.examples.SparkPi \
> --master yarn \
> ./examples/jars/spark-examples_2.12-3.0.3.jar \
> 10

结果:
Pi is roughly 3.142211142211142
 类似资料: