当前位置: 首页 > 工具软件 > Proximity > 使用案例 >

ElasticSearch教程——proximity match 近似匹配

法和安
2023-12-01

ElasticSearch汇总请查看:ElasticSearch教程——汇总篇

1、什么是近似匹配

两个句子

java is my favourite programming language, and I also think spark is a very good big data system.
java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.

match query,搜索java spark

{
	"match": {
		"content": "java spark"
	}
}

match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是离的很近

包含java或包含spark,或包含java和spark的doc,都会被返回回来。我们其实并不知道哪个doc,java和spark距离的比较近。如果我们就是希望搜索java spark,中间不能插入任何其他的字符,那这个时候match去做全文检索,能搞定我们的需求吗?答案是,搞不定。

如果我们要尽量让java和spark离的很近的document优先返回,要给它一个更高的relevance score,这就涉及到了proximity match,近似匹配

如果说,要实现两个需求:

1、java spark,就靠在一起,中间不能插入任何其他字符,就要搜索出来这种doc
2、java spark,但是要求,java和spark两个单词靠的越近,doc的分数越高,排名越靠前

要实现上述两个需求,用match做全文检索,是搞不定的,必须得用proximity match,近似匹配

phrase match,proximity match:短语匹配,近似匹配

这一讲,要学习的是phrase match,就是仅仅搜索出java和spark靠在一起的那些doc,比如有个doc,是java use'd spark,不行。必须是比如java spark are very good friends,是可以搜索出来的。

phrase match,就是要去将多个term作为一个短语,一起去搜索,只有包含这个短语的doc才会作为结果返回。不像是match,java spark,java的doc也会返回,spark的doc也会返回。

2、match_phrase

GET /forum/article/_search
{
  "query": {
    "match": {
      "content": "java spark"
    }
  }
}

单单包含java的doc也返回了,不是我们想要的结果

POST /forum/article/5/_update
{
  "doc": {
    "content": "spark is best big data solution based on scala ,an programming language similar to java spark"
  }
}

将一个doc的content设置为恰巧包含java spark这个短语

 

match_phrase语法

GET /forum/article/_search
{
    "query": {
        "match_phrase": {
            "content": "java spark"
        }
    }
}

成功了,只有包含java spark这个短语的doc才返回了,只包含java的doc不会返回

3、term position

hello world, java spark        doc1
hi, spark java                doc2

hello         doc1(0)        
wolrd        doc1(1)
java                doc1(2) doc2(2)
spark        doc1(3) doc2(1)

了解什么是分词后的position
 

GET _analyze
{
  "text": "hello world, java spark",
  "analyzer": "standard"
}
 
{
  "tokens": [
    {
      "token": "hello",
      "start_offset": 0,
      "end_offset": 5,
      "type": "<ALPHANUM>",
      "position": 0
    },
    {
      "token": "world",
      "start_offset": 6,
      "end_offset": 11,
      "type": "<ALPHANUM>",
      "position": 1
    },
    {
      "token": "java",
      "start_offset": 13,
      "end_offset": 17,
      "type": "<ALPHANUM>",
      "position": 2
    },
    {
      "token": "spark",
      "start_offset": 18,
      "end_offset": 23,
      "type": "<ALPHANUM>",
      "position": 3
    }
  ]
}

4、match_phrase的基本原理

索引中的position,match_phrase

hello world, java spark        doc1
hi, spark java                doc2

hello         doc1(0)        
wolrd        doc1(1)
java                doc1(2) doc2(2)
spark        doc1(3) doc2(1)

java spark --> match phrase

java spark --> java和spark

java --> doc1(2) doc2(2)
spark --> doc1(3) doc2(1)

要找到每个term都在的一个共有的那些doc,就是要求一个doc,必须包含每个term,才能拿出来继续计算

doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好满足条件

doc1符合条件

doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不满足,那么doc2不匹配

必须理解这块原理!!!!

因为后面的proximity match就是原理跟这个一模一样!!!

 

slop

注:proximity match= match phrase+ slop

GET /forum/article/_search
{
    "query": {
        "match_phrase": {
            "title": {
                "query": "java spark",
                "slop":  1
            }
        }
    }
}

 

slop含义

query string,搜索文本,中的几个term,要经过几次移动才能与一个document匹配,这个移动的次数,就是slop

实际举例,一个query string经过几次移动之后可以匹配到一个document,然后设置slop

hello world, java is very good, spark is also very good.

java spark,match phrase,搜不到

如果我们指定了slop,那么就允许java spark进行移动,来尝试与doc进行匹配

java        is        very        good        spark        is

java        spark
java        -->        spark
java                -->        spark
java                        -->            spark

这里的slop,就是3,因为java spark这个短语,spark移动了3次,就可以跟一个doc匹配上了

slop的含义,不仅仅是说一个query string terms移动几次,跟一个doc匹配上。一个query string terms,最多可以移动几次去尝试跟一个doc匹配上

slop,设置的是3,那么就ok
 

GET /forum/article/_search
{
    "query": {
        "match_phrase": {
            "title": {
                "query": "java spark",
                "slop":  3
            }
        }
    }
}

就可以把刚才那个doc匹配上,那个doc会作为结果返回

 

但是如果slop设置的是2,那么java spark,spark最多只能移动2次,此时跟doc是匹配不上的,那个doc是不会作为结果返回的

验证slop的含义

GET /forum/article/_search
{
  "query": {
    "match_phrase": {
      "content": {
        "query": "spark data",
        "slop": 3
      }
    }
  }
}

spark  is    best     big    data     solution based on scala ,an programming language similar to java spark

spark data
          --> data
                      --> data
spark                  --> data
 

GET /forum/article/_search
{
  "query": {
    "match_phrase": {
      "content": {
        "query": "data spark",
        "slop": 5
      }
    }
  }
}

spark        is                best        big            data

data        spark
-->            data/spark
spark        <--data
spark        -->                data
spark                        -->        data
spark                                -->            data

slop搜索下,关键词离的越近,relevance score就会越高

GET /forum/article/_search
{
  "query": {
    "match_phrase": {
      "content": {
        "query": "java best",
        "slop": 15
      }
    }
  }
}
 
{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0.65380025,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 0.65380025,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course",
          "author_first_name": "Smith",
          "author_last_name": "Williams",
          "new_author_last_name": "Williams",
          "new_author_first_name": "Smith"
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 0.07111243,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2017-03-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java spark",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny"
        }
      }
    ]
  }
}

其实,加了slop的phrase match,就是proximity match,近似匹配

1、java spark,短语,doc,phrase match
2、java spark,可以有一定的距离,但是靠的越近,越先搜索出来,proximity match

召回率

比如你搜索一个java spark,总共有100个doc,能返回多少个doc作为结果,就是召回率,recall

 

精准度

比如你搜索一个java spark,能不能尽可能让包含java spark,或者是java和spark离的很近的doc,排在最前面,precision

直接用match_phrase短语搜索,会导致必须所有term都在doc field中出现,而且距离在slop限定范围内,才能匹配上

match phrase,proximity match,要求doc必须包含所有的term,才能作为结果返回;如果某一个doc可能就是有某个term没有包含,那么就无法作为结果返回

java spark --> hello world java --> 就不能返回了
java spark --> hello world, java spark --> 才可以返回

近似匹配的时候,召回率比较低,精准度太高了

但是有时可能我们希望的是匹配到几个term中的部分,就可以作为结果出来,这样可以提高召回率。同时我们也希望用上match_phrase根据距离提升分数的功能,让几个term距离越近分数就越高,优先返回

就是优先满足召回率,意思,java spark,包含java的也返回,包含spark的也返回,包含java和spark的也返回;同时兼顾精准度,就是包含java和spark,同时java和spark离的越近的doc排在最前面

此时可以用bool组合match query和match_phrase query一起,来实现上述效果
 

GET /forum/article/_search
{
  "query": {
    "bool": {
      "must": {
        "match": { 
          "title": {
            "query":  "java spark" --> java或spark或java spark,java和spark靠前,但是没法区分java和spark的距离,也许java和spark靠的很近,但是没法排在最前面
          }
        }
      },
      "should": {
        "match_phrase": { --> 在slop以内,如果java spark能匹配上一个doc,那么就会对doc贡献自己的relevance score,如果java和spark靠的越近,那么就分数越高
          "title": {
            "query": "java spark",
            "slop":  50
          }
        }
      }
    }
  }
}

对比 match phrase,proximity match查询结果

GET /forum/article/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "content": "java spark"
          }
        }
      ]
    }
  }
}
 
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0.68640786,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 0.68640786,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course",
          "author_first_name": "Smith",
          "author_last_name": "Williams",
          "new_author_last_name": "Williams",
          "new_author_first_name": "Smith",
          "followers": [
            "Tom",
            "Jack"
          ]
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 0.68324494,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2017-03-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java spark",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny",
          "followers": [
            "Jack",
            "Robbin Li"
          ]
        }
      }
    ]
  }
}
GET /forum/article/_search 
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "content": "java spark"
          }
        }
      ],
      "should": [
        {
          "match_phrase": {
            "content": {
              "query": "java spark",
              "slop": 50
            }
          }
        }
      ]
    }
  }
}
 
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1.258609,
    "hits": [
      {
        "_index": "forum",
        "_type": "article",
        "_id": "5",
        "_score": 1.258609,
        "_source": {
          "articleID": "DHJK-B-1395-#Ky5",
          "userID": 3,
          "hidden": false,
          "postDate": "2017-03-01",
          "tag": [
            "elasticsearch"
          ],
          "tag_cnt": 1,
          "view_cnt": 10,
          "title": "this is spark blog",
          "content": "spark is best big data solution based on scala ,an programming language similar to java spark",
          "sub_title": "haha, hello world",
          "author_first_name": "Tonny",
          "author_last_name": "Peter Smith",
          "new_author_last_name": "Peter Smith",
          "new_author_first_name": "Tonny",
          "followers": [
            "Jack",
            "Robbin Li"
          ]
        }
      },
      {
        "_index": "forum",
        "_type": "article",
        "_id": "2",
        "_score": 0.68640786,
        "_source": {
          "articleID": "KDKE-B-9947-#kL5",
          "userID": 1,
          "hidden": false,
          "postDate": "2017-01-02",
          "tag": [
            "java"
          ],
          "tag_cnt": 1,
          "view_cnt": 50,
          "title": "this is java blog",
          "content": "i think java is the best programming language",
          "sub_title": "learned a lot of course",
          "author_first_name": "Smith",
          "author_last_name": "Williams",
          "new_author_last_name": "Williams",
          "new_author_first_name": "Smith",
          "followers": [
            "Tom",
            "Jack"
          ]
        }
      }
    ]
  }
}

match和phrase match(proximity match)区别

match --> 只要简单的匹配到了一个term,就可以理解将term对应的doc作为结果返回,扫描倒排索引,扫描到了就ok

phrase match --> 首先扫描到所有term的doc list; 找到包含所有term的doc list; 然后对每个doc都计算每个term的position,是否符合指定的范围; slop,需要进行复杂的运算,来判断能否通过slop移动,匹配一个doc

match query的性能比phrase match和proximity match(有slop)要高很多。因为后两者都要计算position的距离。
match query比phrase match的性能要高10倍,比proximity match的性能要高20倍。

但是别太担心,因为es的性能一般都在毫秒级别,match query一般就在几毫秒,或者几十毫秒,而phrase match和proximity match的性能在几十毫秒到几百毫秒之间,所以也是可以接受的。

优化proximity match的性能,一般就是减少要进行proximity match搜索的document数量。主要思路就是,用match query先过滤出需要的数据,然后再用proximity match来根据term距离提高doc的分数,同时proximity match只针对每个shard的分数排名前n个doc起作用,来重新调整它们的分数,这个过程称之为rescoring,重计分。因为一般用户会分页查询,只会看到前几页的数据,所以不需要对所有结果进行proximity match操作。

用我们刚才的说法,match + proximity match同时实现召回率和精准度

默认情况下,match也许匹配了1000个doc,proximity match全都需要对每个doc进行一遍运算,判断能否slop移动匹配上,然后去贡献自己的分数
但是很多情况下,match出来也许1000个doc,其实用户大部分情况下是分页查询的,所以可能最多只会看前几页,比如一页是10条,最多也许就看5页,就是50条
proximity match只要对前50个doc进行slop移动去匹配,去贡献自己的分数即可,不需要对全部1000个doc都去进行计算和贡献分数

rescore(重打分)

match:1000个doc,其实这时候每个doc都有一个分数了; proximity match,前50个doc,进行rescore,重打分,即可; 让前50个doc,term举例越近的,排在越前面

GET /forum/article/_search 
{
  "query": {
    "match": {
      "content": "java spark"
    }
  },
  "rescore": {
    "window_size": 50,
    "query": {
      "rescore_query": {
        "match_phrase": {
          "content": {
            "query": "java spark",
            "slop": 50
          }
        }
      }
    }
  }
}

 

 

 

 

 类似资料: