当前位置: 首页 > 工具软件 > PyBrain > 使用案例 >

python做神经网络选择scikit-learn neurolab_用Pybrain库进行神经网络数据拟合的主要步骤...

金理
2023-12-01

Pybrain号称最好用的Python神经网络库。其实Scikit-Learn号称Python上最好用的机器学习库,但是它偏偏就没有神经网络这块,所以就与我无缘了。

之前也看过一些提到Neurolab这个库的,打算之后尝试一下(好像支持的神经网络不太一样)。

Pybrain的文档传说中写得不错,但是我需要的例子它并没有。官方文档给的例子是用于分类的,而不是数据拟合(预测,或者叫做回归问题)。

另外,官方文档的函数(方法)说明并不全,有一些需要自己通过help函数在python shell里调用,或者直接阅读源代码。

好了言归正传。大概分为以下这几步。

. 构造神经网络

. 构造数据集

. 训练神经网络

. 结果可视化

. 验证与分析

构造神经网络

可以采用快速建立神经网络的模式,也可以自己设定神经网络。这里采用第二种做法,建立的是前馈神经网络。

from pybrain.structure import *

# 建立神经网络fnn

fnn = FeedForwardNetwork()

# 设立三层,一层输入层(3个神经元,别名为inLayer),一层隐藏层,一层输出层

inLayer = LinearLayer(3,)

hiddenLayer = SigmoidLayer(7,)

outLayer = LinearLayer(1,)

# 将三层都加入神经网络(即加入神经元)

fnn.addInputModule(inLayer)

fnn.addModule(hiddenLayer)

fnn.addOutputModule(outLayer)

# 建立三层之间的连接

in_to_hidden = FullConnecTIon(inLayer, hiddenLayer)

hidden_to_out = FullConnecTIon(hiddenLayer, outLayer)

# 将连接加入神经网络

fnn.addConnecTIon(in_to_hidden)

fnn.addConnecTIon(hidden_to_out)

# 让神经网络可用

fnn.sortModules()

构造数据集

在构造数据集的时候,我用的是SupervisedDataset,即监督数据集。也可以试一试别的。

from pybrain.supervised.trainers import BackpropTrainer

# 定义数据集的格式是三维输入,一维输出

DS = SupervisedDataSet(3,1)

# 往数据集内加样本点

# 假设x1,x2,x3是输入的三个维度向量,y是输出向量,并且它们的长度相同

for i in len(y):

DS.addSample([x1[i], x2[i], x3[i]], [y[i]])

# 如果要获得里面的输入/输出时,可以用

X = DS['input']

Y = DS['target']

# 如果要把数据集切分成训练集和测试集,可以用下面的语句,训练集:测试集=8:2

# 为了方便之后的调用,可以把输入和输出拎出来

dataTrain, dataTest = DS.splitWithProportion(0.8)

xTrain, yTrain = dataTrain['input'], dataTrain['target']

xTest, yTest = dataTest['input'], dataTest['target']

构造数据集部分就这样告一段落了。

训练神经网络

俗话说得好,80%的工作往往是20%的部分完成的。嗯哼,其实最重要的代码就是如下这几行啦。

不过调用的是别人的东西,也不知道内部的实现比例,就是开个玩笑。

from pybrain.supervised.trainers import BackpropTrainer

# 训练器采用BP算法

# verbose = True即训练时会把Total error打印出来,库里默认训练集和验证集的比例为4:1,可以在括号里更改

trainer = BackpropTrainer(fnn, dataTrain, verbose = True, learningrate=0.01)

# maxEpochs即你需要的最大收敛迭代次数,这里采用的方法是训练至收敛,我一般设为1000

trainer.trainUntilConvergence(maxEpochs=1000)

结果可视化

数据可视化就不提了,基本上用的是Pylab来进行数据可视化,具体可见这篇博文:

Python的一些画图函数 。

验证与分析

首先,我们可以挑一个随机数据来看看结果。

import random

# c为从0到xTest的长度(包括0,不包括长度)之间的随机值

c = random.randint(0, xTest.shape[0])

# X2为xTest的一个随机样本点

X2 = xTest[c,:]

# activate函数即神经网络训练后,预测的X2的输出值

prediction = fnn.activate(X2)

# 可以将其打印出来

print('true number is: ' + str(yTest[c]),

'prediction number is:' + str(prediction),

'error:' + str((prediction-yTest[c])/yTest[c]))

我们可以把神经网络打印出来,此处的代码是在stackoverflow里找到的,出处忘了,感谢那个哥们的轮子。

这样就可以看各条连接的权重了。

for mod in fnn.modules:

print "Module:", mod.name

if mod.paramdim > 0:

print "--parameters:", mod.params

for conn in fnn.connections[mod]:

print "-connection to", conn.outmod.name

if conn.paramdim > 0:

print "- parameters", conn.params

if hasattr(fnn, "recurrentConns"):

print "Recurrent connections"

for conn in fnn.recurrentConns:

print "-", conn.inmod.name, " to", conn.outmod.name

if conn.paramdim > 0:

print "- parameters", conn.params

我们可以调用一个计时器来看程序的运行时间,判断性能

import time

# 在需要计时的代码前调用这个

start = time.clock()

# 在需要计时的代码后再调用一次clock函数

elapsed = (time.clock()-start)

print("Time used:" + str(elapsed))

如果需要一些统计数据的话,可以自己写一些统计类的函数,或者找包里的tools模块,有一些统计函数,比如均方误差(MSE)等。

 类似资料: