It's a github repo star predictor that tries to predict the stars ofany github repository having greater than 100 stars. It predicts based onthe owner/organization's status and activities (commits, forks, comments,branches, update rate, etc.) on the repository. Different types of models(Gradient boost, Deep neural network, etc) have been tested successfullyon the dataset we fetched from github apis.
We used the github REST api and GraphQL api to collect data of repositorieshaving more than 100 stars. The data is available in the dataset directoryWe were able to collect the data faster using the Digital Ocean's multipleservers. So we thanks Digital Ocean for providingfree credits to students to use servers. For the details on dataset featuresrefer the summary section below.
We also used Google Colab's GPU notebooks.So we thank to Google for starting thier colab project forproviding GPUs
Below is a brief description for the Code files/folder in repo.
getting_repos_v2.js
filepath: scripts/nodejs/getting_repos_v2.js
This script fetches the basic info of repos having more than 100 stars using the Github REST API
githubGraphQLApiCallsDO_V2.js
filepath: scripts/nodejs/githubGraphQLApiCallsDO_V2.js
This script fetches the complete info of the repositories that were fetched by the abovescript and uses the Github GraphQL API. It follows the approach of fetching the dataat the fixed rate defined in env file (eg. 730ms per request)
githubGraphQLApiCallsDO_V3.js
filepath: scripts/nodejs/githubGraphQLApiCallsDO_V3.js
This script fetches the complete info of the repositories that were fetched by the abovescript and uses the Github GraphQL API. It follows the approach of requesting data fornext repo after receiving the response of the already sent request.
json_to_csv.py
filepath: scripts/python/json_to_csv.py
This script converts the json data fetched from Github's GraphQL API in the above script to theequivalent csv file.
merge.py
filepath: scripts/python/merge.py
This scripts merges all the data in multiple csv files to a single csv file
VisualizePreprocess.ipynb
filepath: notebooks/VisualizePreprocess.ipynb
We have done the feature engineering task in this notebook. It visualises the data and correspondinglycreates new features, modifies existing features and removes redundant features. For detailson features created, check the summary below
training_models.ipynb
filepath: notebooks/training_models.ipynb
In this notebook, we trained different models with hyper parameter tuning on our dataset and compared their result in the end.For details on models trained, their prediction scores, etc. check the summary below.
In this project we have tried to predict the number of starsof a github repository that have more than 100 stars. For this we havetaken the github repository data from github REST api and GraphQL api.After generating the dataset we visualized and did some feature engineeringwith the dataset and after that , finally we come up to the stage where weapplied various models and predicted the model's scores on training andtest data.
There are total of 49 features before pre-processing. After pre-processing (adding new features, removal of redundant features andmodifying existing features) the count changes to 54. All the features are listed below.Some features after pre-processing may not be clear. Please refer to the VisualizePreprocess.ipynb notebook for details.
column 1 | column 2 | column 3 |
---|---|---|
branches | commits | createdAt |
description | diskUsage | followers |
following | forkCount | gistComments |
gistStar | gists | hasWikiEnabled |
iClosedComments | iClosedParticipants | iOpenComments |
iOpenParticipants | isArchived | issuesClosed |
issuesOpen | license | location |
login | members | organizations |
prClosed | prClosedComments | prClosedCommits |
prMerged | prMergedComments | prMergedCommits |
prOpen | prOpenComments | prOpenCommits |
primaryLanguage | pushedAt | readmeCharCount |
readmeLinkCount | readmeSize | readmeWordCount |
releases | reponame | repositories |
siteAdmin | stars | subscribersCount |
tags | type | updatedAt |
websiteUrl |
column 1 | column 2 | column 3 |
---|---|---|
branches | commits | createdAt |
diskUsage | followers | following |
forkCount | gistComments | gistStar |
gists | hasWikiEnabled | iClosedComments |
iClosedParticipants | iOpenComments | iOpenParticipants |
issuesClosed | issuesOpen | members |
organizations | prClosed | prClosedComments |
prClosedCommits | prMerged | prMergedComments |
prMergedCommits | prOpen | prOpenComments |
prOpenCommits | pushedAt | readmeCharCount |
readmeLinkCount | readmeSize | readmeWordCount |
releases | repositories | subscribersCount |
tags | type | updatedAt |
websiteUrl | desWordCount | desCharCount |
mit_license | nan_license | apache_license |
other_license | remain_license | JavaScript |
Python | Java | Objective |
Ruby | PHP | other_language |
nodejs项目,简单易用: https://github.com/yyx990803/starz
以我的price-monitor项目为例: https://github.com/qqxx6661/price-monitor star: https://github.com/qqxx6661/price-monitor/stargazers fork: https://github.com/qqxx6661/price-monitor/network
转载:https://mp.weixin.qq.com/s?__biz=MzI1MjU5MjMzNA==&mid=2247484731&idx=1&sn=b15fbee5910b36341bf366860ee5df53&scene=21#wechat_redirect 这次给大家带来的是ENCODE project的御用比对软件STAR,ENCODE项目是一个由美国国家人类基因组研究所(NHGRI
以下排序不单纯看star数。js相关的排除、PhP相关的排除、冷门语言(编程榜前十名之外)排除。 标*的为曾经最热门但目前已经没落的项目,虽然star数很高但不推荐使用。 一.最佳项目 以下收录的项目价值很高,每一个都推动了计算机历史的进程,不能用star衡量,所以star数不列出 项目 描述 pytorch 仅次于Tensorflow的深度学习框架 spring-framework Javawe
以下排序不单纯看star数。js相关的排除、PhP相关的排除、冷门语言(编程榜前十名之外)排除。 标*的为曾经最热门但目前已经没落的项目,虽然star数很高但不推荐使用。 一.最佳项目 以下收录的项目价值很高,每一个都推动了计算机历史的进程,不能用star衡量,所以star数不列出 项目 描述 tensorflow 目前最流行的深度学习框架 linux Linux内核源码 spring-boot
https://github.com/search?l=PHP&q=+stars%3A%3E0&ref=searchresults&type=Repositories 转载于:https://www.cnblogs.com/arvintang/p/5994615.html
This extension allows you to organize your Github stars with tags. You can then export those tags that you created to bookmarks in your Chrome browser or to a JSON file. Installation You can download
点击某颗星星进行打分。 [Code4App.com]
所以现在我们已经介绍了 GitHub 的大部分功能与工作流程,但是任意一个小组或项目都会去自定义,因为他们想要创造或扩展想要整合的服务。 对我们来说很幸运的是,GitHub 在许多方面都真的很方便 Hack。 在本节中我们将会介绍如何使用 GitHub 钩子系统与 API 接口,使 GitHub 按照我们的设想来工作。 钩子 GitHub 仓库管理中的钩子与服务区块是 GitHub 与外部系统交互
你可以在 Github 上为项目创建远程仓库。创建公开的远程仓库是免费的,私有仓库要收费。 任务 在 Github 网站申请一个帐号。 https://github.com 配置帐号的 ssh-key。 https://github.com/settings/keys ssh-key 在 Github 个人帐户里配置使用了 ssh-key,以后你往你的 Github 远程仓库推送的时候就不需要输入
代码仓库 我们在GitHub上进行Tengine项目的开发:https://github.com/alibaba/tengine。 可以用git检出最新的Tengine代码: 参与开发 我们非常欢迎也很鼓励您在Tengine的项目的GitHub上报告issue或者pull request。 如果您还不熟悉GitHub的Fork and Pull开发模式,您可以阅读GitHub的文档(https:/
类属性 $allowSignup 是否在登录页显示注册,默认false